In this study, the physicochemical, rheological, in vitro starch digestibility, and emulsifying properties of starch extracted from pineapple stem agricultural waste were investigated in comparison with commercial cassava, corn, and rice starches. Pineapple stem starch had the highest amylose content (30.82%), which contributed to the highest pasting temperature (90.22 °C) and the lowest paste viscosity. It had the highest gelatinization temperatures, gelatinization enthalpy, and retrogradation. Pineapple stem starch gel had the lowest freeze-thaw stability, as evidenced by the highest syneresis value of 53.39% after five freeze-thaw cycles. Steady flow tests showed that pineapple stem starch gel (6%, /) exhibited the lowest consistency coefficient () and the highest flow behavior index (), while dynamic viscoelastic measurements gave the gel strength in the following order: rice > corn > pineapple stem > cassava starch gel. Interestingly, pineapple stem starch provided the highest slowly digestible starch (SDS) (48.84%) and resistant starch (RS) (15.77%) contents compared to other starches. The oil-in-water (O/W) emulsion stabilized with gelatinized pineapple stem starch exhibited higher emulsion stability than that stabilized with gelatinized cassava starch. Pineapple stem starch could therefore be used as a promising source of nutritional SDS and RS, and as an emulsion stabilizer for food applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217021 | PMC |
http://dx.doi.org/10.3390/foods12102028 | DOI Listing |
Biochim Biophys Acta Proteins Proteom
January 2025
Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia; Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, South Jakarta 12930, Indonesia. Electronic address:
Tacorin, a bioactive protein fraction derived from pineapple stem (Ananas comosus), has emerged as a promising therapeutic agent for wound healing. This study employs an integrated approach, combining in silico proteomics and in vivo investigations, to unravel the molecular mechanisms underlying Tacorin's wound healing properties. In the domain of in silico proteomics, the composition of Tacorin is elucidated through LC/MS-MS protein sequencing, revealing ananain (23.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
Pineapple leaf waste, a byproduct of agricultural processes, was used as a novel raw material to synthesize carbon dots (CDs) through a simple hydrothermal method. The CDs were subsequently incorporated into pineapple stem starch (PSS)-based active food packaging films. The characterization of the CDs and PSS-CDs films was conducted using various techniques, including UV-light spectroscopy, fluorescence spectroscopy, and transmission electron microscopy.
View Article and Find Full Text PDFAntibiotics (Basel)
October 2024
Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy.
Urinary tract infections (UTIs) are infections that involve the urethra, bladder, and, in much more severe cases, even kidneys. These infections represent one of the most common diseases worldwide. Various pathogens are responsible for this condition, the most common being ().
View Article and Find Full Text PDFBiopolymers
November 2024
Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand.
This research explores the integration of corn husk nanocellulose (CHNc) and pineapple leaf nanocellulose (PLNc) as reinforcing agents in a carboxymethyl cellulose-based film derived from durian husk (CMC). Through a solvent-casting method, composite films were fabricated with varying nanocellulose contents (15, 30, and 45 wt%). Analysis using Fourier transform infrared spectroscopy and x-ray diffraction confirmed the effectiveness of alkaline and bleaching treatments in eliminating noncellulosic components.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Istanbul Medeniyet University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey; Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkey. Electronic address:
Lignocellulosic bioplastics were produced using four different green wastes: hemp, parsley stem, pineapple leaves and walnut shell. Two different solutions were used to dissolve the green wastes: trifluoroacetic acid (TFA) and pure water. The changes in their natural structures and the solvent effect during the regeneration in biofilm formation were investigated by using Synchrotron FTIR Microspectroscopy (SR-µFTIR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!