In sparkling winemaking, only a few yeast strains are regularly used for the secondary in-bottle alcoholic fermentation (SiBAF). Recently, advances in yeast development programs have yielded new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavors and aromas. In this work, the chemical and sensorial impacts of the use of interspecific yeast hybrids for SiBAF were studied using three commercial English base wines prepared for SiBAF using two commercial and four novel interspecific hybrids. After 12 months of lees aging, the chemical and macromolecular composition, phenolic profile, foaming, viscosity and sensory properties of the resulting 13 wines were assessed. Chemically, the yeast strains did not result in significant differences in the main wine parameters, while some differences in their macromolecular contents and sensory characteristics were noticeable. The foamability was mostly unaffected by the strain used; however, some effect on the foam stability was noticeable, likely due to the differences in polysaccharides released into the wines by the yeast strains. The wines exhibited different sensory characteristics in terms of aroma and bouquet, balance, finish, overall liking and preference, but these were mostly attributable to the differences in the base wines rather than the strain used for SiBAF. Novel interspecific yeast hybrids can be used for the elaboration of sparkling wines, as they provided wines with chemical characteristics, flavor and aroma attributes similar to those of commonly used commercial strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217371 | PMC |
http://dx.doi.org/10.3390/foods12101995 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
Sugarcane has the most complex polyploid genome in the world, and sugar-related traits are one of the most important aims in sugarcane breeding. It is essential to construct a representative pan-transcriptome that contains all transcripts of a species for studies on genetic diversity, population expression, and omics analyses in sugarcane. In this study, we constructed the first comprehensive pan-transcriptome for sugarcane, and 8434 highly reliable open reading frames were found, which were not aligned with any published sugarcane genome.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
Sumoylation is a posttranslational modification essential for multiple cellular functions in eukaryotes. ULP-2 is a conserved SUMO protease required for embryonic development in Caenorhabditis elegans. Here, we revealed that ULP-2 controls germline development by regulating the PHD-SET domain protein, SET-26.
View Article and Find Full Text PDFHeliyon
January 2025
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China.
Our previous study found that WRINKLED1-like (DpWRI1-like) was a key regulatory factor of lipid biosynthesis in . gene and target genes of DpWRI1-like have been obtained in our previous study, but the interacting proteins of DpWRI1-like are unclear now, which has limited a deep understanding of the function of DpWRI1-like. Yeast two-hybrid was widely used to identify protein-protein interaction.
View Article and Find Full Text PDFAutophagy
January 2025
Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.
Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, is a valuable model organism for deciphering molecular details that define macroautophagy pathways.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
Elucidating the mechanisms underlying heat tolerance in rice (Oryza Sativa. L) is vital for adapting this crop to rising global temperature while increasing yields. Here, we identified a rice mutant, high temperature tolerance 1 (htt1), with high survival rates under heat stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!