The Transcription Factor HaHB11 Boosts Grain Set and Yield in Rice Plants, Allowing Them to Approach Their Ideal Phenotype.

Biomolecules

Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina.

Published: May 2023

The ideal rice phenotype is that of plants exhibiting fewer panicles with high biomass, large grain number, flag leaf area with small insertion angles, and an erected morphology improving light interception. The sunflower transcription factor HaHB11, homeodomain-leucine zipper I, confers increased seed yield and abiotic stress tolerance to Arabidopsis and maize. Here, we report the obtaining and characterization of rice plants expressing driven by its promoter or the 35S constitutive one. Transgenic plants closely resembled the ideal high-yield phenotype, whereas those carrying the construct were hard to distinguish from the wild type. The former had an erected architecture, enhanced vegetative leaf biomass, rolled flag leaves with a larger surface, sharper insertion angles insensitive to brassinosteroids, and higher harvest index and seed biomass than the wild type. The combination of the distinct features exhibited by plants, including the increased number of set grains per panicle, supports the high-yield phenotype. We wondered where has to be expressed to achieve the high-yield phenotype and evaluated expression levels in all tissues. The results indicate that its expression is particularly necessary in the flag leaf and panicle to produce the ideal phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216415PMC
http://dx.doi.org/10.3390/biom13050826DOI Listing

Publication Analysis

Top Keywords

high-yield phenotype
12
transcription factor
8
factor hahb11
8
rice plants
8
ideal phenotype
8
flag leaf
8
insertion angles
8
wild type
8
phenotype
6
plants
5

Similar Publications

TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.

View Article and Find Full Text PDF

A study on the production of extracellular vesicles derived from novel immortalized human placental mesenchymal stromal cells.

Sci Rep

January 2025

International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China.

Extracellular vesicles (EVs) are not only involved in cell-to-cell communications but have other functions as "garbage bags", as bringing nutrients to cells, and as inducing mineral during bone formation and ectopic calcification. These minuscule entities significantly contribute to the regulation of bodily functions. However, the clinical application of EVs faces challenges due to limited production yield and targeting efficiency.

View Article and Find Full Text PDF

Background: The development of superior summer maize hybrids with high-yield potential and essential agronomic traits, such as resistance to lodging, is crucial for ensuring the sustainability of maize cultivation. However, the task of identifying and breeding genotypes that exhibit exceptional performance and stability across multiple environment conditions, while considering a wide range of traits, is challenging. Given the backdrop of global climate change, understanding which climate variables and soil properties most significantly impact environmental similarity is essential for selecting hybrids with improved adaptability to regions with diverse climatic and soil conditions.

View Article and Find Full Text PDF

Cowpea is deemed as a food security crop due to its ability to produce significant yields under conditions where other staples fail. Its resilience in harsh environments; such as drought, heat and marginal soils; along with its nitrogen-fixing capabilities and suitability as livestock feed make cowpea a preferred choice in many farming systems across sub-Saharan Africa (SSA). Despite its importance, Cowpea yields in farmers' fields remain suboptimal, primarily due to biotic and abiotic factors and the use of either unimproved varieties or improved varieties that are not well-suited to local conditions.

View Article and Find Full Text PDF

Background: Walnut (Juglans regia L.) breeding programs aim to develop new genotypes that exhibit superior agronomic traits, including high yield, improved nut quality, and favorable phenological traits. One of the primary methods used in these programs is hybridization, which involves controlled crosses between selected parent varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!