Self-Regulated Symmetry Breaking Model for Stem Cell Differentiation.

Entropy (Basel)

Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA.

Published: May 2023

In conventional disorder-order phase transitions, a system shifts from a highly symmetric state, where all states are equally accessible (disorder) to a less symmetric state with a limited number of available states (order). This transition may occur by varying a control parameter that represents the intrinsic noise of the system. It has been suggested that stem cell differentiation can be considered as a sequence of such symmetry-breaking events. Pluripotent stem cells, with their capacity to develop into any specialized cell type, are considered highly symmetric systems. In contrast, differentiated cells have lower symmetry, as they can only carry out a limited number of functions. For this hypothesis to be valid, differentiation should emerge collectively in stem cell populations. Additionally, such populations must have the ability to self-regulate intrinsic noise and navigate through a critical point where spontaneous symmetry breaking (differentiation) occurs. This study presents a mean-field model for stem cell populations that considers the interplay of cell-cell cooperativity, cell-to-cell variability, and finite-size effects. By introducing a feedback mechanism to control intrinsic noise, the model can self-tune through different bifurcation points, facilitating spontaneous symmetry breaking. Standard stability analysis showed that the system can potentially differentiate into several cell types mathematically expressed as stable nodes and limit cycles. The existence of a Hopf bifurcation in our model is discussed in light of stem cell differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217192PMC
http://dx.doi.org/10.3390/e25050815DOI Listing

Publication Analysis

Top Keywords

stem cell
20
symmetry breaking
12
cell differentiation
12
intrinsic noise
12
model stem
8
highly symmetric
8
symmetric state
8
limited number
8
cell populations
8
spontaneous symmetry
8

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.

Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.

View Article and Find Full Text PDF

Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.

In Vitro Cell Dev Biol Anim

January 2025

Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.

The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.

View Article and Find Full Text PDF

Chronic Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), affecting the female genital tract in 25-66% of the patients. This condition, referred to as Genital GVHD is an underdiagnosed gynecologic comorbidity, that can significantly impair quality of life. We aimed to describe the prevalence and management of genital GVHD following HSCT.

View Article and Find Full Text PDF

Intra-patient variability in immunosuppressive blood drug concentrations is a potential biomarker in managing organ transplant patients. However, the association between the time in therapeutic range of tacrolimus blood concentrations and its efficacy in preventing graft-versus-host disease remains unknown. In this study, we analyzed the relationship between the time in therapeutic range of tacrolimus blood concentrations and its efficacy in acute graft-versus-host disease prophylaxis in patients undergoing allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!