A major issue in the application of deep learning is the definition of a proper architecture for the learning machine at hand, in such a way that the model is neither excessively large (which results in overfitting the training data) nor too small (which limits the learning and modeling capabilities of the automatic learner). Facing this issue boosted the development of algorithms for automatically growing and pruning the architectures as part of the learning process. The paper introduces a novel approach to growing the architecture of deep neural networks, called downward-growing neural network (DGNN). The approach can be applied to arbitrary feed-forward deep neural networks. Groups of neurons that negatively affect the performance of the network are selected and grown with the aim of improving the learning and generalization capabilities of the resulting machine. The growing process is realized via replacement of these groups of neurons with sub-networks that are trained relying on ad hoc target propagation techniques. In so doing, the growth process takes place simultaneously in both the depth and width of the DGNN architecture. We assess empirically the effectiveness of the DGNN on several UCI datasets, where the DGNN significantly improves the average accuracy over a range of established deep neural network approaches and over two popular growing algorithms, namely, the AdaNet and the cascade correlation neural network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217234 | PMC |
http://dx.doi.org/10.3390/e25050733 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.
Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran.
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211800, China.
Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Data Science, Minjiang University, Fuzhou, 350018, China.
This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!