FSTL1 Suppresses Triple-Negative Breast Cancer Lung Metastasis by Inhibiting M2-like Tumor-Associated Macrophage Recruitment toward the Lungs.

Diagnostics (Basel)

Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

Published: May 2023

Immune cell infiltration into the tumor microenvironment is associated with cancer prognosis. Tumor-associated macrophages play essential roles in tumor initiation, progression, and metastasis. Follistatin-like protein 1 (FSTL1), a widely expressed glycoprotein in human and mouse tissues, is a tumor suppressor in various cancers and a regulator of macrophage polarization. However, the mechanism by which FSTL1 affects crosstalk between breast cancer cells and macrophages remains unclear. By analyzing public data, we found that FSTL1 expression was significantly low in breast cancer tissues compared to normal breast tissues, and high expression of FSTL1 in patients indicated prolonged survival. Using flow cytometry, we found that total and M2-like macrophages dramatically increased in the metastatic lung tissues during breast cancer lung metastasis in mice. Transwell assay in vitro and q-PCR experimental results showed that FSTL1 inhibited macrophage migration toward 4T1 cells by decreasing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. We demonstrated that FSTL1 inhibited M2-like tumor-associated macrophage recruitment toward the lungs by suppressing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. Therefore, we identified a potential therapeutic strategy for triple-negative breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217361PMC
http://dx.doi.org/10.3390/diagnostics13101724DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
4t1 cells
12
triple-negative breast
8
cancer lung
8
lung metastasis
8
m2-like tumor-associated
8
tumor-associated macrophage
8
macrophage recruitment
8
recruitment lungs
8
fstl1 inhibited
8

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.

Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!