Intrauterine fetal demise in women during pregnancy is a major contributing factor in prenatal mortality and is a major global issue in developing and underdeveloped countries. When an unborn fetus passes away in the womb during the 20th week of pregnancy or later, early detection of the fetus can help reduce the chances of intrauterine fetal demise. Machine learning models such as Decision Trees, Random Forest, SVM Classifier, KNN, Gaussian Naïve Bayes, Adaboost, Gradient Boosting, Voting Classifier, and Neural Networks are trained to determine whether the fetal health is Normal, Suspect, or Pathological. This work uses 22 features related to fetal heart rate obtained from the Cardiotocogram (CTG) clinical procedure for 2126 patients. Our paper focuses on applying various cross-validation techniques, namely, K-Fold, Hold-Out, Leave-One-Out, Leave-P-Out, Monte Carlo, Stratified K-fold, and Repeated K-fold, on the above ML algorithms to enhance them and determine the best performing algorithm. We conducted exploratory data analysis to obtain detailed inferences on the features. Gradient Boosting and Voting Classifier achieved 99% accuracy after applying cross-validation techniques. The dataset used has the dimension of 2126 × 22, and the label is multiclass classified as Normal, Suspect, and Pathological condition. Apart from incorporating cross-validation strategies on several machine learning algorithms, the research paper focuses on Blackbox evaluation, which is an Interpretable Machine Learning Technique used to understand the underlying working mechanism of each model and the means by which it picks features to train and predict values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217387PMC
http://dx.doi.org/10.3390/diagnostics13101692DOI Listing

Publication Analysis

Top Keywords

machine learning
16
intrauterine fetal
12
fetal demise
12
learning models
8
early detection
8
gradient boosting
8
boosting voting
8
voting classifier
8
normal suspect
8
suspect pathological
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!