Breast cancer is categorized as an aggressive disease, and it is one of the leading causes of death. Accurate survival predictions for both long-term and short-term survivors, when delivered on time, can help physicians make effective treatment decisions for their patients. Therefore, there is a dire need to design an efficient and rapid computational model for breast cancer prognosis. In this study, we propose an ensemble model for breast cancer survivability prediction (EBCSP) that utilizes multi-modal data and stacks the output of multiple neural networks. Specifically, we design a convolutional neural network (CNN) for clinical modalities, a deep neural network (DNN) for copy number variations (CNV), and a long short-term memory (LSTM) architecture for gene expression modalities to effectively handle multi-dimensional data. The independent models' results are then used for binary classification (long term > 5 years and short term < 5 years) based on survivability using the random forest method. The EBCSP model's successful application outperforms models that utilize a single data modality for prediction and existing benchmarks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217686 | PMC |
http://dx.doi.org/10.3390/diagnostics13101688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!