COVID-ConvNet: A Convolutional Neural Network Classifier for Diagnosing COVID-19 Infection.

Diagnostics (Basel)

Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia.

Published: May 2023

The novel coronavirus (COVID-19) pandemic still has a significant impact on the worldwide population's health and well-being. Effective patient screening, including radiological examination employing chest radiography as one of the main screening modalities, is an important step in the battle against the disease. Indeed, the earliest studies on COVID-19 found that patients infected with COVID-19 present with characteristic anomalies in chest radiography. In this paper, we introduce COVID-ConvNet, a deep convolutional neural network (DCNN) design suitable for detecting COVID-19 symptoms from chest X-ray (CXR) scans. The proposed deep learning (DL) model was trained and evaluated using 21,165 CXR images from the COVID-19 Database, a publicly available dataset. The experimental results demonstrate that our COVID-ConvNet model has a high prediction accuracy at 97.43% and outperforms recent related works by up to 5.9% in terms of prediction accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217197PMC
http://dx.doi.org/10.3390/diagnostics13101675DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural network
8
chest radiography
8
prediction accuracy
8
covid-19
6
covid-convnet convolutional
4
network classifier
4
classifier diagnosing
4
diagnosing covid-19
4
covid-19 infection
4

Similar Publications

Gesture-controlled reconfigurable metasurface system based on surface electromyography for real-time electromagnetic wave manipulation.

Nanophotonics

January 2025

Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.

View Article and Find Full Text PDF

Smart farming is a hot research area for experts globally to fulfill the soaring demand for food. Automated approaches, based on convolutional neural networks (CNN), for crop disease identification, weed classification, and monitoring have substantially helped increase crop yields. Plant diseases and pests are posing a significant danger to the health of plants, thus causing a reduction in crop production.

View Article and Find Full Text PDF

Significance: Radiofrequency ablation to treat atrial fibrillation (AF) involves isolating the pulmonary vein from the left atria to prevent AF from occurring. However, creating ablation lesions within the pulmonary veins can cause adverse complications.

Aim: We propose automated classification algorithms to classify optical coherence tomography (OCT) volumes of human venoatrial junctions.

View Article and Find Full Text PDF

Objective: To improve the accuracy and explainability of skin lesion detection and classification, particularly for several types of skin cancers, through a novel approach based on the convolutional neural networks with attention-integrated customized ResNet variants (CRVs) and an optimized ensemble learning (EL) strategy.

Methods: Our approach utilizes all ResNet variants combined with three attention mechanisms: channel attention, soft attention, and squeeze-excitation attention. These attention-integrated ResNet variants are aggregated through a unique multi-level EL strategy.

View Article and Find Full Text PDF

Objective: Although the evaluation of left ventricular ejection fraction (LVEF) in patients with atrial fibrillation (AF) or atrial flutter (AFL) is crucial for appropriate medical management, the prediction of reduced LVEF (<50%) with AF/AFL electrocardiograms (ECGs) lacks evidence. This study aimed to investigate deep-learning approaches to predict reduced LVEF (<50%) in patients with AF/AFL ECGs and easily obtainable clinical information.

Methods: Patients with 12-lead ECGs of AF/AFL and echocardiography were divided into those with LVEF <50% and ≥50%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!