Complex Organisms Must Deal with Complex Threats: How Does Amphibian Conservation Deal with Biphasic Life Cycles?

Animals (Basel)

Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.

Published: May 2023

The unprecedented rate of global amphibian decline is attributed to The Anthropocene, with human actions triggering the Sixth Mass Extinction Event. Amphibians have suffered some of the most extreme declines, and their lack of response to conservation actions may reflect challenges faced by taxa that exhibit biphasic life histories. There is an urgent need to ensure that conservation measures are cost-effective and yield positive outcomes. Many conservation actions have failed to meet their intended goals of bolstering populations to ensure the persistence of species into the future. We suggest that past conservation efforts have not considered how different threats influence multiple life stages of amphibians, potentially leading to suboptimal outcomes for their conservation. Our review highlights the multitude of threats amphibians face at each life stage and the conservation actions used to mitigate these threats. We also draw attention to the paucity of studies that have employed multiple actions across more than one life stage. Conservation programs for biphasic amphibians, and the research that guides them, lack a multi-pronged approach to deal with multiple threats across the lifecycle. Conservation management programs must recognise the changing threat landscape for biphasic amphibians to reduce their notoriety as the most threatened vertebrate taxa globally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215276PMC
http://dx.doi.org/10.3390/ani13101634DOI Listing

Publication Analysis

Top Keywords

conservation actions
12
conservation
9
biphasic life
8
outcomes conservation
8
life stage
8
stage conservation
8
biphasic amphibians
8
threats
5
life
5
actions
5

Similar Publications

[microRNAs: regulators of metamorphosis in insects].

Biol Aujourdhui

January 2025

Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France.

In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis.

View Article and Find Full Text PDF

The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Introduction: Homeobox genes are highly conserved and play critical roles in brain development. Recently we have found that mammals have an additional fragment of approximately 20 amino acids in Emx1 and a poly-(Ala)6-7 in Emx2, compared to other amniotes. It has been shown that Emx1 and Emx2 have synergistic actions in the brain development.

View Article and Find Full Text PDF

The expansion of drone-based aerial imagery has facilitated an increase in data obtained from free-ranging marine mammal populations, in particular cetacean species. This non-invasive approach allows for body condition assessments, including nutritional and reproductive health. Yet, existing methods of image analysis are time-consuming and lack the granularity to determine early-stage pregnancies and miscarriage rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!