Heat Acclimation under Drought Stress Induces Antioxidant Enzyme Activity in the Alpine Plant .

Antioxidants (Basel)

Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.

Published: May 2023

Heat and drought stresses are increasingly relevant topics in the context of climate change, particularly in the Alps, which are warming faster than the global average. Previously, we have shown that alpine plants, including , can be gradually heat hardened under field conditions in situ to achieve maximum tolerance within a week. Here, we investigated the antioxidant mechanisms of leaves that had been heat hardened (H) without or with (H+D) additional drought stress. Lower free-radical scavenging and ascorbate concentrations were found in H and H+D leaves, while concentrations of glutathione disulphide (GSSG) were higher under both treatments without any change in glutathione (GSH) and little change in glutathione reductase activity. In contrast, ascorbate peroxidase activity in H leaves was increased, and H+D leaves had >two-fold higher catalase, ascorbate peroxidase and glucose-6-phosphate dehydrogenase activities compared with the control. In addition, the glutathione reductase activity was higher in H+D compared with H leaves. Our results highlight that the stress load from heat acclimation to maximum tolerance is associated with a weakened low-molecular-weight antioxidant defence, which may be compensated for by an increased activity of antioxidant enzymes, particularly under drought conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215133PMC
http://dx.doi.org/10.3390/antiox12051093DOI Listing

Publication Analysis

Top Keywords

heat acclimation
8
drought stress
8
heat hardened
8
maximum tolerance
8
h+d leaves
8
change glutathione
8
glutathione reductase
8
reductase activity
8
ascorbate peroxidase
8
heat
5

Similar Publications

Purpose: Exercise-induced heat acclimation can mitigate age-related reductions in heat-loss capacity, though performing repeated bouts of strenuous exercise in the heat may be untenable for many older adults. While short-term passive heat acclimation (e.g.

View Article and Find Full Text PDF

Short duration heat acclimation (HA) (≤5 daily heat exposures) elicits incomplete adaptation compared to longer interventions, possibly due to the lower accumulated thermal 'dose'. It is unknown if matching thermal 'dose' over a shorter timescale elicits comparable adaptation to a longer intervention. Using a parallel-groups design, we compared: i) 'condensed' HA (CHA; =17 males) consisting of 4×75 min∙day heat exposures (target rectal temperature ()=38.

View Article and Find Full Text PDF

An animal's body mass is said to be indirectly related to its rate of heat loss; that is, smaller animals with higher surface area to volume tend to lose heat faster than larger animals. Thus, thermoregulation should be related to body size, however, generalizable patterns are still unclear. Domestic dogs are a diverse species of endothermic mammals, including a 44-fold difference in body size.

View Article and Find Full Text PDF

Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.

View Article and Find Full Text PDF

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!