One of the main causes of food spoilage is the lipid oxidation of its components, which generates the loss of nutrients and color, together with the invasion of pathogenic microorganisms. In order to minimize these effects, active packaging has played an important role in preservation in recent years. Therefore, in the present study, an active packaging film was developed using polylactic acid (PLA) and silicon dioxide (SiO) nanoparticles (NPs) (0.1% /) chemically modified with cinnamon essential oil (CEO). For the modification of the NPs, two methods (M1 and M2) were tested, and their effects on the chemical, mechanical, and physical properties of the polymer matrix were evaluated. The results showed that CEO conferred to SiO NPs had a high percentage of 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical inhibition (>70%), cell viability (>80%), and strong inhibition to E. coli, at 45 and 11 µg/mL for M1 and M2, respectively, and thermal stability. Films were prepared with these NPs, and characterizations and evaluations on apple storage were performed for 21 days. The results show that the films with pristine SiO improved tensile strength (28.06 MPa), as well as Young's modulus (0.368 MPa) since PLA films only presented values of 27.06 MPa and 0.324 MPa, respectively; however, films with modified NPs decreased tensile strength values (26.22 and 25.13 MPa), but increased elongation at break (from 5.05% to 10.32-8.32%). The water solubility decreased from 15% to 6-8% for the films with NPs, as well as the contact angle, from 90.21° to 73° for the M2 film. The water vapor permeability increased for the M2 film, presenting a value of 9.50 × 10 g Pa h m. FTIR analysis indicated that the addition of NPs with and without CEO did not modify the molecular structure of pure PLA; however, DSC analysis indicated that the crystallinity of the films was improved. The packaging prepared with M1 (without Tween 80) showed good results at the end of storage: lower values in color difference (5.59), organic acid degradation (0.042), weight loss (24.24%), and pH (4.02), making CEO-SiO a good component to produce active packaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215188PMC
http://dx.doi.org/10.3390/antiox12051090DOI Listing

Publication Analysis

Top Keywords

active packaging
16
modified cinnamon
8
cinnamon essential
8
essential oil
8
pla films
8
tensile strength
8
analysis indicated
8
films
7
nps
7
packaging
5

Similar Publications

Background: In Nigeria, men constitute over half of the people notified with tuberculosis (TB), experience longer delays before reaching care, and are estimated to account for two thirds of people who miss out on care. The higher TB risk and burden in men has implications for the whole population and reaching them earlier with TB services will reduce onward transmission in households, communities, and workplaces. The absence of a comprehensive guidance and the lack of substantial empirical evidence on TB care approaches that are responsive to the needs of men in Nigeria exacerbates this problem.

View Article and Find Full Text PDF

Thermosensitive-based synergistic antibacterial effects of novel LL37@ZPF-2 loaded poloxamer hydrogel for infected skin wound healing.

Int J Pharm

January 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:

Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.

View Article and Find Full Text PDF

Preparation of a biodegradable packaging film by konjac glucomannan/sodium alginate reinforced with nitrogen-doped carbon quantum dots from crayfish shell for crayfish meat preservation.

Int J Biol Macromol

January 2025

Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China. Electronic address:

The development of biomass material is an important approach to alleviating the excessive using of plastic packaging, by which the product could be more environmentally friendly and lower toxicity. In this study, we developed a biodegradable photodynamic antibacterial food packaging film using nitrogen-doped carbon quantum dots (N-CQDs) synthesized from crayfish shells, combined with konjac glucomannan (KGM) and sodium alginate (SA). Casting method was used to prepare the composite film and results indicated that incorporation of N-CQDs significantly enhanced the mechanical and barrier properties of the film by reducing the number of micropores.

View Article and Find Full Text PDF

Bisphenol A induces apoptosis and disrupts testosterone synthesis in TM3 cells via reactive oxygen species-mediated mitochondrial pathway and autophagic flux inhibition.

Ecotoxicol Environ Saf

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:

Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.

View Article and Find Full Text PDF

Plant protein-based edible film and coatings have emerged as eco-friendly alternatives to synthetic packaging, offering biodegradable, non-toxic solutions. Their biocompatibility and film-forming properties make them suitable for direct application on food products, reducing reliance on non-degradable plastics and lowering environmental pollution. Despite their promising advantages, challenges remain in optimizing mechanical properties, production scalability, and consumer acceptance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!