AI Article Synopsis

Article Abstract

As a natural sweetener, stevioside is extracted from Bertoni and possesses potent antioxidant activity. However, little information is known about its protective role in maintaining the intestinal epithelial cells health under oxidative stress. The aim of this study was to investigate the protective effects and underlying mechanisms of stevioside on alleviating inflammation, apoptosis, and improving antioxidant capacity in intestinal porcine epithelial cells (IPEC-J2) under oxidative stress by diquat. The results demonstrated that the pretreatment with stevioside (250 μM) for 6 h increased cell viability and proliferation and prevented apoptosis induced by diquat at 1000 μM for 6 h in IPEC-J2 cells, compared with the diquat alone-treated cells. Importantly, stevioside pretreatment significantly reduced ROS and MDA production as well as upregulated T-SOD, CAT, and GSH-Px activity. Moreover, it also decreased cell permeability and improved intestinal barrier functions by significantly upregulating the tight junction protein abundances of claudin-1, occludin, and ZO-1. At the same time, stevioside significantly down-regulated the secretion and gene expression of IL-6, IL-8, and TNF-α and decreased the phosphorylation levels of NF-κB, IκB, and ERK1/2 compared with the diquat alone group. Taken together, this study demonstrated that stevioside alleviated diquat-stimulated cytotoxicity, inflammation, and apoptosis in IPEC-J2 cells, protecting cellular barrier integrity and mitigating oxidative stress by interfering with the NF-κB and MAPK signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215602PMC
http://dx.doi.org/10.3390/antiox12051070DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
inflammation apoptosis
12
ipec-j2 cells
12
antioxidant capacity
8
capacity intestinal
8
intestinal barrier
8
epithelial cells
8
compared diquat
8
stevioside
7
cells
6

Similar Publications

Causal role of ischemic heart disease in ovarian cancer subtypes.

Discov Oncol

January 2025

Department of Cardiovascular Medicine, Jiu Jiang NO.1 People's Hospital, Jiujiang, 332000, China.

Background: Ischemic heart disease (IHD) may share biological mechanisms with cancer, including ovarian cancer, through pathways such as chronic inflammation and oxidative stress. However, the relationship between IHD and ovarian cancer subtypes remains unclear. This study used Mendelian randomization (MR) to explore potential causal associations.

View Article and Find Full Text PDF

Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration.

View Article and Find Full Text PDF

Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.

View Article and Find Full Text PDF

Synergistic effect of canine FGF-21 combined with insulin in the treatment of canine diabetes.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.

Previous studies have shown that FGF-21 can ameliorate hyperglycemia and improve the level of oxidative stress in vivo in diabetic mice. The hypoglycemic effect is safe and lasting, but it takes a longer time to exert its effect. Insulin treatment of canine diabetes takes effect quickly; however, its action time is short, and it is prone to cause hypoglycemia.

View Article and Find Full Text PDF

Platelet-rich plasma alleviates skin photoaging by activating autophagy and inhibiting inflammasome formation.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Dermatology, Dongshan Hospital, Guofengyuan Building, Xuezi Avenue, Meijiang District, Meizhou, 514011, Guangdong, China.

Platelet-rich plasma (PRP) holds promising prospects for the treatment of skin photoaging. This study aims to unravel the mechanism underlying PRP's anti-photoaging properties. Partial skin of rats was irradiated with ultraviolet (UV) and injected with PRP, and the skin appearance, pathological state, and aging conditions were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!