Here we designed and synthesized analogs of two antimicrobial peptides, namely C10:0-A2, a lipopeptide, and TA4, a cationic α-helical amphipathic peptide, and used non-proteinogenic amino acids to improve their therapeutic properties. The physicochemical properties of these analogs were analyzed, including their retention time, hydrophobicity, and critical micelle concentration, as well as their antimicrobial activity against gram-positive and gram-negative bacteria and yeast. Our results showed that substitution with D- and N-methyl amino acids could be a useful strategy to modulate the therapeutic properties of antimicrobial peptides and lipopeptides, including enhancing stability against enzymatic degradation. The study provides insights into the design and optimization of antimicrobial peptides to achieve improved stability and therapeutic efficacy. TA4(dK), C10:0-A2(6-NMeLys), and C10:0-A2(9-NMeLys) were identified as the most promising molecules for further studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215143 | PMC |
http://dx.doi.org/10.3390/antibiotics12050821 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!