Multimodal data fusion (electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)) has been developed as an important neuroimaging research field in order to circumvent the inherent limitations of individual modalities by combining complementary information from other modalities. This study employed an optimization-based feature selection algorithm to systematically investigate the complementary nature of multimodal fused features. After preprocessing the acquired data of both modalities (i.e., EEG and fNIRS), the temporal statistical features were computed separately with a 10 s interval for each modality. The computed features were fused to create a training vector. A wrapper-based binary enhanced whale optimization algorithm (E-WOA) was used to select the optimal/efficient fused feature subset using the support-vector-machine-based cost function. An online dataset of 29 healthy individuals was used to evaluate the performance of the proposed methodology. The findings suggest that the proposed approach enhances the classification performance by evaluating the degree of complementarity between characteristics and selecting the most efficient fused subset. The binary E-WOA feature selection approach showed a high classification rate (94.22 ± 5.39%). The classification performance exhibited a 3.85% increase compared with the conventional whale optimization algorithm. The proposed hybrid classification framework outperformed both the individual modalities and traditional feature selection classification ( < 0.01). These findings indicate the potential efficacy of the proposed framework for several neuroclinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215946 | PMC |
http://dx.doi.org/10.3390/bioengineering10050608 | DOI Listing |
JMIR Med Inform
January 2025
Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: Many tools have been developed to predict the risk of diabetes in a population without diabetes; however, these tools have shortcomings that include the omission of race, inclusion of variables that are not readily available to patients, and low sensitivity or specificity.
Objective: We aimed to develop and validate an easy, systematic index for predicting diabetes risk in the Asian population.
Methods: We collected the data from the NAGALA (NAfld [nonalcoholic fatty liver disease] in the Gifu Area, Longitudinal Analysis) database.
Parasit Vectors
January 2025
Faculty of Information Technology, Mutah University, Mutah, Jordan.
Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Utah Health, 30 N. Mario Capecchi Dr., Level 5 South, Salt Lake City, UT, 84132, USA.
Background: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR.
Methods: Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not.
BMC Public Health
January 2025
Department of Statistics and Data Science, Jahangirnagar University, Dhaka, 1342, Bangladesh.
Background: Child mortality is a reliable and significant indicator of a nation's health. Although the child mortality rate in Bangladesh is declining over time, it still needs to drop even more in order to meet the Sustainable Development Goals (SDGs). Machine Learning models are one of the best tools for making more accurate and efficient forecasts and gaining in-depth knowledge.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11461, Riyadh, Saudi Arabia.
Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!