Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Excessive skin scarring affects over 100 million patients worldwide, with effects ranging from cosmetic to systemic problems, and an effective treatment is yet to be found. Ultrasound-based therapies have been used to treat a variety of skin disorders, but the exact mechanisms behind the observed effects are still unclear. The aim of this work was to demonstrate the potential of ultrasound for the treatment of abnormal scarring by developing a multi-well device based on printable piezoelectric material (PiezoPaint™). First, compatibility with cell cultures was evaluated using measurements of heat shock response and cell viability. Second, the multi-well device was used to treat human fibroblasts with ultrasound and quantify their proliferation, focal adhesions, and extracellular matrix (ECM) production. Ultrasound caused a significant reduction in fibroblast growth and ECM deposition without changes in cell viability or adhesion. The data suggest that these effects were mediated by nonthermal mechanisms. Interestingly, the overall results suggest that ultrasound treatment would a be beneficial therapy for scar reduction. In addition, it is expected that this device will be a useful tool for mapping the effects of ultrasound treatment on cultured cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215462 | PMC |
http://dx.doi.org/10.3390/bioengineering10050566 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!