AI Article Synopsis

  • Long-term stress on the plantar fascia (PF) is primarily caused by factors like midsole hardness (MH) in running shoes, leading to conditions like plantar fasciitis.
  • A finite-element (FE) model of the foot-shoe was created using ANSYS to investigate how different MH levels affect PF stress and strain during running.
  • Results showed that increasing MH decreased PF stress and strain, but also led to greater peak pressure on the outsole and altered foot biomechanics, indicating a trade-off for the benefits in PF relief.

Article Abstract

High long-term stress on the plantar fascia (PF) is the main cause of plantar fasciitis. Changes in the midsole hardness (MH) of running shoes are an important factor leading to the alteration of the PF. This study aims to establish a finite-element (FE) model of the foot-shoe, and investigates the effects of midsole hardness on PF stress and strain. The FE foot-shoe model was built in ANSYS using computed-tomography imaging data. Static structural analysis was used to simulate the moment of running push and stretch. Plantar stress and strain under different MH levels were quantitatively analyzed. A complete and valid 3D FE model was established. With an increase in MH from 10 to 50 Shore A, the overall stress and strain of the PF were decreased by approximately 1.62%, and the metatarsophalangeal (MTP) joint flexion angle was decreased by approximately 26.2%. The height of the arch descent decreased by approximately 24.7%, but the peak pressure of the outsole increased by approximately 26.6%. The established model in this study was effective. For running shoes, increasing the MH reduces the stress and strain of PF, but also imposes a higher load on the foot.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215323PMC
http://dx.doi.org/10.3390/bioengineering10050533DOI Listing

Publication Analysis

Top Keywords

stress strain
16
midsole hardness
12
effects midsole
8
plantar fascia
8
running shoes
8
stress
5
hardness mechanical
4
mechanical response
4
response characteristics
4
plantar
4

Similar Publications

The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.

View Article and Find Full Text PDF

Benzo (a) pyrene produced by food during high-temperature process enters the body through ingestion, which causes food safety issues to the human body. In order to alleviate the harm of foodborne benzo (a) pyrene to human health, a strain that can degrade benzo (a) pyrene was screened from Kefir, a traditional fermented product in Xinjiang. Bacillus cereus M72-4 is a Gram-positive bacteria sourced from Xinjiang traditional fermented product Kefir, under Benzo(a)pyrene stress conditions, there was 69.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a common cancer accompanied by microbiome dysbiosis. Exploration of probiotics against oncogenic microorganisms is promising for CRC treatment. Here, differential microorganisms between CRC and healthy control were analyzed.

View Article and Find Full Text PDF

In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation.

View Article and Find Full Text PDF

Shear wave elastography reveals passive and active mechanics of triceps surae muscles in vivo: From shear modulus-ankle angle to stress-strain characteristics.

J Appl Physiol (1985)

January 2025

Experimental Biomechanics Group, Institute of Structural Mechanics and Dynamics in Aerospace Engineering, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Germany.

Characterizing individual muscle behavior is crucial for understanding joint function and adaptations to exercise, diseases, or aging. Shear wave elastography (SWE) is a promising tool for measuring the intrinsic material properties of muscle. This study assessed the passive and active shear modulus of the triceps surae muscle group in 14 volunteers (7 females, 25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!