Fertilizer application can increase yields, but nutrient runoff may cause environmental pollution and affect soil quality. A network-structured nanocomposite used as a soil conditioner is beneficial to crops and soil. However, the relationship between the soil conditioner and soil microbes is unclear. We evaluated the soil conditioner's impact on nutrient loss, pepper growth, soil improvement, and, especially, microbial community structure. High-throughput sequencing was applied to study the microbial communities. The microbial community structures of the soil conditioner treatment and the CK were significantly different, including in diversity and richness. The predominant bacterial phyla were Pseudomonadota, Actinomycetota, and Bacteroidota. Acidobacteriota and Chloroflexi were found in significantly higher numbers in the soil conditioner treatment. Ascomycota was the dominant fungal phylum. The Mortierellomycota phylum was found in significantly lower numbers in the CK. The bacteria and fungi at the genus level were positively correlated with the available K, available N, and pH, but were negatively correlated with the available P. Our results showed that the loss of nutrients controlled by the soil conditioner increased available N, which improved soil properties. Therefore, the microorganisms in the improved soil were changed. This study provides a correlation between improvements in microorganisms and the network-structured soil conditioner, which can promote plant growth and soil improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215273 | PMC |
http://dx.doi.org/10.3390/biology12050668 | DOI Listing |
Sci Rep
January 2025
Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia.
Globally, the companies that make commercial use of bamboo culms produce different kinds of solid waste rich in lignocellulosic biomass, which in some cases is not used and is discarded in landfills or incinerated in the open air; losing the possibility of recovering them and using them in other productive sectors. The research objective were to produce a biochar from Guadua agustifolia Kunth sawdust, evaluate its potential environmental and agricultural use, obtain a biochar/TiO composite to inactivate Escherichia coli and use the biochar as a soil conditioner in medicinal plants producing phenolic compounds and flavonoids. Biochar composite (produced at 300 °C for 1 h) involved TiO at 450 °C for 1 h for inactivation of E.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Chongqing Key Laboratory of Land Quality Geological Survey, Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China.
Heavy metals (HMs) pollution in agricultural soil-rice systems has attracted worldwide attention as it directly threatens regional ecological security and human health. To understand the heavy metal pollution of agriculture soil and rice in the high geological background areas, a total of 200 paddy soil and rice samples were collected in southeast Chongqing. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in paddy soil and rice were analyzed.
View Article and Find Full Text PDFChemosphere
December 2024
Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India. Electronic address:
Cypermethrin (Cy) is a widely used insecticide, leading to significant environmental contamination in homes and agricultural areas. Effective methods to minimize or eliminate insecticidal residues are essential. Seaweeds, traditionally used in agriculture as soil conditioners, offer a promising solution for remediating pesticide-contaminated soils through biogenic nanoparticle synthesis.
View Article and Find Full Text PDFMicroorganisms
October 2024
Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany.
Due to shallow root systems, potato is a particularly drought-sensitive crop. To counteract these limitations, the application of plant growth-promoting microorganisms (PGPMs) is discussed as a strategy to improve nutrient acquisition and biotic and abiotic stress resilience. However, initial root colonization by PGPMs, in particular, can be affected by stress factors that negatively impact root growth and activity or the survival of PGPMs in the rhizosphere.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Stabilized sludge products (SSP) are promising conditioners for saline-alkali soils, capable of enhancing soil physicochemical properties and stimulating microbial communities. However, there is limited knowledge regarding the effects of SSP on soil salt-discharge capacity and carbon/nitrogen cycles. Here, a six-month incubation experiment was conducted to evaluate SSP (0 % ~ 60 %) on saline-alkali soil properties, salt leaching, and microbial functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!