Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13577-023-00921-7DOI Listing

Publication Analysis

Top Keywords

female gametogenesis
8
human oogenesis
8
female germline
8
vivo vitro
4
vitro exploring
4
exploring key
4
key molecular
4
molecular cellular
4
cellular aspects
4
aspects human
4

Similar Publications

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

Galectin-1 and galectin-3 in male reproduction - impact in health and disease.

Semin Immunopathol

January 2025

Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.

The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved.

View Article and Find Full Text PDF

Partial rejuvenation of the spermatogonial stem cell niche after gender-affirming hormone therapy in trans women.

Elife

January 2025

Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit Brussel, Brussels, Belgium.

Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys.

View Article and Find Full Text PDF

The protein encoded by the gene ( ) plays an essential role in early gametogenesis by complexing with the gene product of ( ) to promote germline stem cell daughter differentiation in males and females. Here, we compared the AlphaFold2 and AlphaFold Multimer predicted structures of Bam protein and the Bam:Bgcn protein complex between , where is necessary in gametogenesis to that in , where it is not. Despite significant sequence divergence, we find very little evidence of significant structural differences in high confidence regions of the structures across the four species.

View Article and Find Full Text PDF

Spatiotemporal dynamics of early oogenesis in pigs.

Genome Biol

January 2025

College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.

Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.

Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!