Hydropower dams are a source of renewable energy, but dam development and hydropower generation negatively affect freshwater ecosystems, biodiversity, and food security. We assess the effects of hydropower dam development on spatial-temporal changes in fish biodiversity from 2007 to 2014 in the Sekong, Sesan, and Srepok Basins-major tributaries to the Mekong River. By analyzing a 7-year fish monitoring dataset, and regressing fish abundance and biodiversity trends against cumulative number of upstream dams, we found that hydropower dams reduced fish biodiversity, including migratory, IUCN threatened and indicator species in the Sesan and Srepok Basins where most dams have been constructed. Meanwhile, fish biodiversity increased in the Sekong, the basin with the fewest dams. Fish fauna in the Sesan and Srepok Basins decreased from 60 and 29 species in 2007 to 42 and 25 species in 2014, respectively; while they increased from 33 in 2007 to 56 species in 2014 in the Sekong Basin. This is one of the first empirical studies to show reduced diversity following dam construction and fragmentation, and increased diversity in less regulated rivers in the Mekong River. Our results underscore the importance of the Sekong Basin to fish biodiversity and highlight the likely significance of all remaining free-flowing sections of the Lower Mekong Basin, including the Sekong, Cambodian Mekong, and Tonle Sap Rivers to migratory and threatened fish species. To preserve biodiversity, developing alternative renewable sources of energy or re-operating existing dams to increase power generation are recommended over constructing new hydropower dams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220217 | PMC |
http://dx.doi.org/10.1038/s41598-023-35665-9 | DOI Listing |
Environ Monit Assess
January 2025
Department of Fisheries Resource Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India.
Wetlands are dynamic ecosystems vital for sustaining ecological health and development at regional and global scales. Geospatial tools have emerged as essential for managing wetland ecosystems. This study assessed the spatiotemporal dynamics of water spread in the Point Calimere Wetland, a coastal Ramsar site located along the Bay of Bengal, India, from 1984 to 2023.
View Article and Find Full Text PDFSci Rep
January 2025
Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, 03824, USA.
Environmental DNA (eDNA) is revolutionizing how we investigate biodiversity in aquatic and terrestrial environments. It is increasingly used for detecting rare and invasive species, assessing biodiversity loss and monitoring fish communities, as it is considered a cost-effective and noninvasive approach. Some environments, however, can be challenging for eDNA analyses.
View Article and Find Full Text PDFSci Data
January 2025
Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
The flat-headed loach (Oreonectes platycephalus) is a small fish inhabiting headwaters of hillstreams of southern China. Its local populations are characterized by low genetic diversity and exceptionally high differentiation, making it an ideal model for studying small population isolates' persistence and adaptive potential. However, the lack of Oreonectes reference genomes limits endeavours toward these ambitions.
View Article and Find Full Text PDFSci Rep
January 2025
Globe Institute, Section for Biodiversity, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark.
Mid-water column turbulence has been shown to cause elevated vertical nutrient flux at the shelf edge in the northeastern North Sea. Here, we demonstrate that phytoplankton communities in this region tend to be dominated by larger cells (estimated from percentage of chlorophyll captured on a 10 μm filter) than beyond the shelf edge. F/F (PSII electron transport capacity) corrected for photoinhibition in the surface layer correlated in this study with the percentage of chlorophyll captured on a 10 µm filter (assumed to be large cells), suggesting that the phytoplankton community was responding to increased nutrients in the euphotic zone by increasing photosynthetic efficiency and altering community composition.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA.
Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!