A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Altitudinal variations and seasonal dynamics of near-surface and soil temperatures in subtropical forests of Mt. Guanshan, Jiangxi Province, China. | LitMetric

Temperature lapse rate (TLR), measured as the degree of temperature change along an altitudinal gradient, is a key indicator of multiple ecological processes of mountain systems. Although many studies have examined temperature changes of open air or near-surface along altitudes, we know little about altitudinal variations of soil temperature, which play an important role in regulating growth and reproduction of organisms, as well as ecosystem nutrient cycling. Based on temperature data of near-surface (15 cm above ground) and soil layers (8 cm below ground) from 12 sampling sites of subtropical forest along an altitudinal gradient (300-1300 m) in Jiangxi Guan-shan National Nature Reserve from September 2018 to August 2021, we calculated the lapse rates of mean, maximum, and minimum temperatures, as well as accumulated temperatures by using simple linear regression for both near-surface and soil temperature. The seasonal dynamics of aforementioned variables were also evaluated. The results showed that there were large differences among mean, maximum, and minimum lapse rates for annual near-surface temperature, which were 0.38, 0.31 and 0.51 ℃·(100 m), respectively. But little variation was documented for soil temperature which were 0.40, 0.38 and 0.42 ℃·(100 m), respectively. The seasonal variations of temperature lapse rates for near-surface and soil layers were minor except for minimum temperature. The lapse rates of minimum temperature were deeper in spring and winter for near-surface and in spring and autumn for soil layers. For growing degree days (GDD), the accumulated temperature under both layers were negatively correlated with altitude, and the lapse rates of ≥5 ℃ were 163 ℃·d·(100 m) for near-surface and 179 ℃·d·(100 m) for soil. The ≥5 ℃ GDD in soil were about 15 days longer than that in near-surface at the same altitude. The results showed inconsistent patterns of altitudinal variations between near-surface and soil temperature. Soil temperature and its lapse rates had minor seasonal variations compared with the near-surface counterparts, which was related to the strong buffering capacity of soil.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202305.019DOI Listing

Publication Analysis

Top Keywords

lapse rates
24
soil temperature
20
near-surface soil
16
temperature lapse
16
temperature
14
altitudinal variations
12
soil
12
soil layers
12
near-surface
11
seasonal dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!