Tuberostemonine alleviates high-fat diet-induced obesity and hepatic steatosis by increasing energy consumption.

Chem Biol Interact

State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China. Electronic address:

Published: August 2023

Obesity is of public concern worldwide, and it increases the probability of developing a number of comorbid diseases, including NAFLD. Recent research on obesity drugs and health demands have shown the potential of natural plant extracts for preventing and treating obesity and their lack of toxicity and treatment-related side effects. We have demonstrated that tuberostemonine (TS), an alkaloid extracted from the traditional Chinese medicine Stemona tuberosa Lour can inhibit intracellular fat deposition, reduce oxidative stress, increase cellular adenosine triphosphate (ATP), and increase mitochondrial membrane potential. It effectively reduced weight gain and fat accumulation caused by a high-fat diet, and regulated liver function and blood lipid levels. Moreover, it regulate glucose metabolism and improved energy metabolism in mice. TS also decreased high-fat diet-induced obesity and improved lipid and glucose metabolism disorders in mice, with no significant side effects. In conclusion, TS was shown to be a safe alternative for obese patients and might be developed as an antiobesity and anti-nonalcoholic fatty liver drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110545DOI Listing

Publication Analysis

Top Keywords

high-fat diet-induced
8
diet-induced obesity
8
side effects
8
glucose metabolism
8
obesity
5
tuberostemonine alleviates
4
alleviates high-fat
4
obesity hepatic
4
hepatic steatosis
4
steatosis increasing
4

Similar Publications

The Effect of the 14:10-Hour Time-Restricted Feeding (TRF) Regimen on Selected Markers of Glucose Homeostasis in Diet-Induced Prediabetic Male Sprague Dawley Rats.

Nutrients

January 2025

Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.

Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.

View Article and Find Full Text PDF

High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry ( L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction.

View Article and Find Full Text PDF

Consumption of phytosterols is a nutritional strategy employed to reduce cholesterol absorption, but recent research shows that their biological activity might go beyond cholesterol reduction for the treatment of metabolic dysfunction-associated fatty liver disease (MAFLD), and novel phytosterol formulations, such as submicron dispersions, could improve these effects. We explored the therapeutic activity of phytosterols, either formulated as submicron dispersions of phytosterols (SDPs) or conventional phytosterol esters (PEs), in a mouse model of MAFLD. MAFLD was induced in mice by atherogenic diet (AD) feeding.

View Article and Find Full Text PDF

Neohesperidin Mitigates High-Fat-Diet-Induced Colitis In Vivo by Modulating Gut Microbiota and Enhancing SCFAs Synthesis.

Int J Mol Sci

January 2025

National Engineering Laboratory for Rice and By-Products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, China.

Previous research has consistently shown that high-fat diet (HFD) consumption can lead to the development of colonic inflammation. Neohesperidin (NHP), a naturally occurring flavanone glycoside in citrus fruits, has anti-inflammatory properties. However, the efficacy and mechanism of NHP in countering prolonged HFD-induced inflammation remains unclear.

View Article and Find Full Text PDF

Cinnamic acid alleviates endothelial dysfunction and oxidative stress by targeting PPARδ in obesity and diabetes.

Chin Med

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Objective: Cinnamic acid (CA) is a bioactive compound isolated from cinnamon. It has been demonstrated to ameliorate inflammation and metabolic diseases, which are associated with endothelial dysfunction. This study was aimed to study the potential protective effects of CA against diabetes-associated endothelial dysfunction and its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!