Constructing biodegradable food packaging with good mechanics, gas barrier and antibacterial properties to maintain food quality is still challenge. In this work, mussel-inspired bio-interface emerged as a tool for constructing functional multilayer films. Konjac glucomannan (KGM) and tragacanth gum (TG) with physical entangled network are introduced in the core layer. Cationic polypeptide ε-polylysine (ε-PLL) and chitosan (CS) producing cationic-π interaction with adjacent aromatic residues in tannic acid (TA) are introduced in the two-sided outer layer. The triple-layer film mimics the mussel adhesive bio-interface, where cationic residues in outer layers interact with negatively charged TG in the core layer. Furthermore, a series of physical tests showed excellent performance of triple-layer film with great mechanical properties (tensile strength (TS): 21.4 MPa, elongation at break (EAB): 7.9 %), UV-shielding (almost 0 % UV transmittance), thermal stability, water, and oxygen barrier (oxygen permeability (OP): 1.14 × 10 g/m s Pa and water vapor permeability (WVP): 2.15 g mm/m day kPa). In addition, the triple-layer film demonstrated advanced degradability, antimicrobial functions, and presented good moisture-proof performance for crackers, which can be potentially applied as dry food packaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.125100 | DOI Listing |
Int J Food Sci
January 2025
Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India.
The widespread reliance on single-use plastics (SUPs) has fostered a global throwaway culture, especially in the food packaging industry, where convenience and low cost have driven their adoption, posing serious environmental threats, particularly to marine ecosystems and biodiversity. Edible and ecofriendly packaging made from millet, specifically sorghum ( () Moench), is a promising solution to mitigate SUP consumption and promote sustainability. This study explores the development of edible sorghum bowls, enhanced through roasting and incorporating 3 g of hibiscus and rose flower powders.
View Article and Find Full Text PDFInt J Food Sci
January 2025
Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
This study is aimed at evaluating the quality and safety of two traditional fermented dairy products commonly found in Lebanon (Ambarees and Kishk in its dry and wet forms) by detecting foodborne pathogens and indicator microorganisms. Additionally, it seeks to identify the strengths, weaknesses, opportunities, and threats to quality and the production level. A total of 58 random samples (duplicated) including goat milk ( = 16), dry Kishk ( = 8), wet Kishk ( = 8), and Ambarees ( = 26) were collected from individuals who both farm and process these products.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
Packaging films based on natural biopolymers often suffer from inadequate barrier and mechanical properties. To address these challenges, multilayer films have emerged as potential solutions. In this study, we prepared bilayer films using bitter vetch seed protein (BVSP) and polylactic acid (PLA).
View Article and Find Full Text PDFBMC Nutr
January 2025
Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of public health, Tehran University of Medical Sciences, Tehran, Iran.
Background: Bisphenol A (BPA) is one of the chemical compounds used in food packaging, so it can migrate from the packaging into food. Also, environmental pollution of this compound is high due to its high use. Therefore, it may enter food chains through the environment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.. Electronic address:
The present study intended to investigate the properties of collagen peptide (CP)-astragaloside (AG) nanocomplexes (CPANs) improved oxidized hydroxypropyl starch (OHS)/chitosan (CS) (OC) film and to explore the preservation of chilled beef. The results indicated that AG significantly enhanced the stability, antioxidant capacity, and antibacterial properties of CP through mechanisms like static quenching and hydrophobic interactions. The incorporation of CPANs improved thickness, swellability, and water vapor blocking, UV-blocking and mechanical properties, antioxidant and antibacterial activity of OC film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!