Genomic loci associated with leaf abscission contribute to machine picking and environmental adaptability in upland cotton (Gossypium hirsutum L.).

J Adv Res

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China. Electronic address:

Published: April 2024

AI Article Synopsis

  • Defoliation via defoliants improves cotton harvesting efficiency and raw cotton quality, yet the genetic basis and variations in leaf abscission are not fully understood.
  • The study aimed to investigate phenotypic variations in cotton leaf abscission, identify genetic loci related to defoliation, and assess the impact of these genetic factors on environmental adaptability.
  • Results showed significant phenotypic variations, discovery of key SNPs, and the identification of important genes linked to defoliation, with findings indicating improved sensitivity to defoliants through specific genetic combinations.

Article Abstract

Introduction: Defoliation by applying defoliants before machine picking is an important agricultural practice that enhances harvesting efficiency and leads to increased raw cotton purity. However, the fundamental characteristics of leaf abscission and the underlying genetic basis in cotton are not clearly understood.

Objectives: In this study, we aimed to (1) reveal the phenotypic variations in cotton leaf abscission, (2) discover the whole-genome differentiation sweeps and genetic loci related to defoliation, (3) identify and verify the functions of key candidate genes associated with defoliation, and (4) explore the relationship between haplotype frequency of loci and environmental adaptability.

Methods: Four defoliation-related traits of 383 re-sequenced Gossypium hirsutum accessions were investigated in four environments. The genome-wide association study (GWAS), linkage disequilibrium (LD) interval genotyping and functional identification were conducted. Finally, the haplotype variation related to environmental adaptability and defoliation traits was revealed.

Results: Our findings revealed the fundamental phenotypic variations of defoliation traits in cotton. We showed that defoliant significantly increased the defoliation rate without incurring yield and fiber quality penalties. The strong correlations between defoliation traits and growth period traits were observed. A genome-wide association study of defoliation traits identified 174 significant SNPs. Two loci (RDR7 on A02 and RDR13 on A13) that significantly associated with the relative defoliation rate were described, and key candidate genes GhLRR and GhCYCD3;1, encoding a leucine-rich repeat (LRR) family protein and D3-type cell cyclin 1 protein respectively, were functional verified by expression pattern analysis and gene silencing. We found that combining of two favorable haplotypes (Hap and Hap) improved sensitivity to defoliant. The favorable haplotype frequency generally increased in high latitudes in China, enabling adaptation to the local environment.

Conclusion: Our findings lay an important foundation for the potentially broad application of leveraging key genetic loci in breeding machine-pickable cotton.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982856PMC
http://dx.doi.org/10.1016/j.jare.2023.05.007DOI Listing

Publication Analysis

Top Keywords

defoliation traits
16
leaf abscission
12
defoliation
9
machine picking
8
environmental adaptability
8
gossypium hirsutum
8
phenotypic variations
8
genetic loci
8
key candidate
8
candidate genes
8

Similar Publications

Response strategies of five common warm temperate plant species to insect defoliation.

BMC Ecol Evol

December 2024

Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.

Under the background of global climate change, climate warming has led to an increase in insect herbivory, which significantly affects the growth, survival, and regeneration of forest plants in the warm temperate zone of China. Plants can adopt defense responses to adapt to insect defoliation. Therefore, field experiments were conducted on five common warm temperate species, Quercus acutissima, Quercus serrata, Quercus aliena, Quercus dentata, and Robinia pseudoacacia.

View Article and Find Full Text PDF

Understanding plant ecophysiological functioning is critical in formulating effective ecologically based strategies to conserve and enhance resiliency and resistance in sagebrush steppe, as well as improving their restoration following degradation by interactive effects of climate change, wildland fire and invasive annual grasses. Recent research has shown increased reproductive photosynthesis following floral defoliation can be important to reproductive potential, yet how this is expressed in plant material selected for different functional attributes is unknown. To address this, we measured photosynthetic gas exchange in clipped and unclipped basal florets and flag leaves of two germplasms of the native perennial bunchgrass, bluebunch wheatgrass, var.

View Article and Find Full Text PDF

Simulation of Defoliation Effects on Relay Strip Intercropping Soybean: Elucidating Foliar Shedding and Leaf-to-Nodule Growth Plasticity.

Plant Cell Environ

November 2024

Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China.

Extensive foliar shedding in monoculture soybeans post-anthesis negatively impacts yield, whereas relay strip intercropping prolongs leaf area duration, enhancing productivity. However, little is known about the causes of leaf shedding in monoculture and its impact on physiological functions and plasticity of source and sink organs, we conducted a 4-year field experiment and leaf-removal simulations in relay intercropped soybeans. Results revealed that monoculture soybeans experienced severe self-shading and defoliation, while relay intercropping maintained better light conditions, supporting higher leaf area, nodule numbers, and carbon allocation.

View Article and Find Full Text PDF

Study of the Genetic Mechanisms of Siberian Stone Pine ( Du Tour) Adaptation to the Climatic and Pest Outbreak Stresses Using Dendrogenomic Approach.

Int J Mol Sci

November 2024

Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia.

Article Synopsis
  • A study combined dendrochronological (tree-ring data) and genomic data to explore how Siberian stone pine adapts genetically to climate change and environmental stressors.
  • Researchers analyzed 84,853 genetic markers (SNPs) and 110 tree traits from 234 trees across six populations to understand the genetic structure and adaptive potential of these trees.
  • The analysis revealed a weak genetic differentiation among populations and identified 30 SNPs linked to tree traits; notably, three SNPs associated with recovery from climatic stress were found across various methods, suggesting their potential adaptive importance.
View Article and Find Full Text PDF

Distribution of Non-Structural Carbohydrates and Root Structure of L. under Different Defoliation Frequencies and Intensities.

Plants (Basel)

October 2024

Laboratorio de Semioquímica Aplicada, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile.

L. (plantain) increases herbage dry matter (DM) production and quality during warm and dry conditions due to its deep roots and drought tolerance and reduces nitrogen losses in grazing systems compared to traditional pastures. However, plantain density usually declines after the third growing season, mainly due to defoliation management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!