Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cadmium (Cd) pollution is an increasingly serious problem in crop production. Although significant progress has been made to comprehend the molecular mechanism of phytochelatins (PCs)-mediated Cd detoxification, the information on the hormonal regulation of PCs is very fragmentary. In the present study, we constructed TRV-COMT, TRV-PCS, and TRV-COMT-PCS plants to further assess the function of CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and PHYTOCHELATIN SYNTHASE (PCS) in melatonin-induced regulation of plant resistance to Cd stress in tomato. Cd stress significantly decreased chlorophyll content and CO assimilation rate, but increased Cd, HO and MDA accumulation in the shoot, most profoundly in PCs deficient TRV-PCS and TRV-COMT-PCS plants. Notably, Cd stress and exogenous melatonin treatment significantly increased endogenous melatonin and PC contents in non-silenced plants. Results also explored that melatonin could alleviate oxidative stress and enhance antioxidant capacity and redox homeostasis by conserving improved GSH:GSSG and ASA:DHA ratios. Moreover, melatonin improves osmotic balance and nutrient absorption by regulating the synthesis of PCs. This study unveiled a crucial mechanism of melatonin-regulated PC synthesis, persuaded Cd stress tolerance and nutrient balance in tomato, which may have potential implications for the enhancement of plant resistance to toxic heavy metal stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131670 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!