Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dendritic cells (DCs) are ubiquitous immune cells endowed with a unique capacity to initiate antigen-specific immunity and tolerance. Owing to their unique functional attributes, DCs have long been considered ideal candidates for the induction of effective antitumour responses. At the forefront of the cancer-immunity cycle, attempts to harness DC natural adjuvant properties in the clinic have resulted so far in suboptimal antitumour responses. A better understanding of the heterogeneity of the DC network and its dynamics within the tumour microenvironment will provide a blueprint to fully capitalise on their functional properties to achieve more effective antitumour responses. In this review, we will briefly summarise the origin and heterogeneity of the DC network, their roles in shaping antitumour immunity and in modulating the response to immune checkpoint blockade therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coi.2023.102341 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!