The current experiment was conducted to investigate the effect of individual or combination of dietary betaine (Bet) and glycine (Gly) on productive performance, stress response, liver health, and intestinal barrier function in broiler chickens raised under heat stress (HS) conditions. A total of four hundred twenty 21-d-old Ross 308 broiler chickens were randomly allotted to 1 of 5 dietary treatments with 7 replicates. Birds in treatment 1 were raised under the thermoneutral condition (TN; 23 ± 0.6°C). Birds in other 4 treatment groups were subjected to a cyclic HS by exposing them to 32 ± 0.9°C for 8 h/d (from 09:00 to 17:00 h) and 28 ± 1.2°C for the remaining time for 14 d. Birds were fed a basal diet in TN condition (TN-C) and one group in HS conditions (HS-C), whereas other birds raised under HS conditions were fed the basal diet supplemented with 0.20% Bet (HS-Bet), 0.79% Gly (HS-Gly), or their combination (0.20% Bet + 0.79% Gly; HS-Bet+Gly). Results indicated that birds in HS-Bet, HS-Gly, or HS-Bet+Gly treatment had higher (P < 0.05) final BW and BW gain, but lower (P < 0.05) feed conversion ratio (FCR) than those in HS-C treatment. However, values for improved final BW, BW gain, and FCR by dietary treatments were lower (P < 0.05) than those measured in TN-C treatment. Under HS conditions, birds in HS-Bet, HS-Gly, or HS-Bet+Gly treatment had lower (P < 0.05) heterophil to lymphocyte ratio than those in HS-C treatment. Birds in HS-Gly or HS-Bet+Gly treatment had higher (P < 0.05) villus height and goblet cell number than birds in HS-C treatment. Intestinal permeability was higher (P < 0.05) in all HS-treatment groups than in TN-C treatment, but it was not affected by dietary treatment. In conclusion, individual supplementation of 0.20% Bet or 0.79% Gly in diets alleviates the negative effect of HS in broiler chickens. However, the synergistic effect of the combination of 0.20% Bet and 0.79% Gly in broiler diets seems lower than expected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232888PMC
http://dx.doi.org/10.1016/j.psj.2023.102771DOI Listing

Publication Analysis

Top Keywords

broiler chickens
16
020% bet
12
079% gly
12
hs-gly hs-bet+gly
12
hs-bet+gly treatment
12
higher 005
12
lower 005
12
hs-c treatment
12
treatment
11
individual combination
8

Similar Publications

Application of UPWr_E124 phage cocktail for effective reduction of avian pathogenic Escherichia coli in mice and broiler chickens.

Vet Microbiol

January 2025

Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego St., Wrocław 51-630, Poland. Electronic address:

Avian pathogenic Escherichia coli (APEC) is the main causative agent of colibacillosis, causing poultry respiratory infections, mortality and economic loss. APEC poses a serious threat to public health and food safety due to its multi-drug resistance and capacity to form biofilms. Bacteriophages (phages) have emerged as an alternative to antibiotics.

View Article and Find Full Text PDF

Campylobacteriosis is one of the most commonly reported foodborne diseases and is of particular importance in low-income countries. More data is needed to better understand the epidemiology of Campylobacter spp. in food sold at informal markets, where most people in low-income countries buy their food.

View Article and Find Full Text PDF

Infectious bronchitis virus (IBV) is known to cause significant alterations in tracheal microbial flora in broiler chickens 5 days post-infection (dpi) and our focus is to understand the changes in both respiratory and gastrointestinal microbiome in broilers over a period of time following IBV infection. A study was conducted to characterize the tracheal and cecal microbiome in IBV infected and control broiler chickens at 6, 9 and 15 dpi. IBV genome in trachea, lung and cecal tonsils could be observed in the infected group at all the time points.

View Article and Find Full Text PDF

Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.

View Article and Find Full Text PDF

Whole genome sequencing revealed high occurrence of antimicrobial resistance genes in bacteria isolated from poultry manure.

Int J Antimicrob Agents

January 2025

Department of Botany, Institute of Science, Banaras Hindu, University, Varanasi, Uttar Pradesh, 221005, India. Electronic address:

Global demand for food has driven expansion and intensification of livestock production, particularly in developing nations where antibiotic use is often routine. Waste from poultry production, including manure, is commonly utilized as fertilizers in agroecosystems, risking environmental contamination with potentially zoonotic bacteria and antimicrobial resistance genes (ARGs). Here, 33 bacterial isolates were recovered from broiler (n=17) and layer (n=16) chicken manure by aerobic culture using Luria Bertani agar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!