Gemini surface active ionic liquids (GSAILs) are considered a new prosperous class of ionic liquids and recognized as high performance materials. The present study explores the capabilities of the newly synthesized GSAILs, constructed from two benzimidazole rings attached a four or a six carbon spacer, namely [Cbenzim-C-benzimC][Br], = 4 and 6. The products were characterized with FT-IR, NMR, XRD, TGA, DTG and SEM methods and were used in curing interfacial properties of the crude oil-water system. The interfacial tension (IFT) was reduced to about 64 and 71% under critical micelle concentrations (CMCs) of 0.028 and 0.025 mol dm at 298.2 K for = 4 and 6 GSAILs, respectively. Temperature significantly assisted this effect. Both the GSAILs could transfer the wettability of the solid surface from oil-wet to water-wet. Further, stable oil/water emulsions were produced, having emulsion indices of 74.2 and 77.3% for = 4 and 6 GSAILs, respectively. Compared to homologous imidazolium GSAILs, the benzimidazolium products revealed better performance in the sense of exhibiting desired effects on the investigated interfacial properties. These can be attributed to the stronger hydrophobicity of the benzimidazolium rings as well as better spreading of the molecular charges. The Frumkin isotherm could exactly reproduce the IFT data, leading to precise determination of the important adsorption and thermodynamic parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206521 | PMC |
http://dx.doi.org/10.1039/d3ra01783d | DOI Listing |
J Chromatogr A
January 2025
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China. Electronic address:
Food safety problem caused by aflatoxins (AFs) has become a major concern worldwide. However, due to the complexity of food matrices and the low concentration of analytes, the accurate and sensitive determination of AFs and their precursors in the biosynthetic pathway is extremely challenging, so the development of efficient sample preparation techniques has been urgently required. This paper reviews the recent advances in sample preparation based on some emerging extraction media for the determination of AFs and their precursors in different food samples, including ionic liquids (ILs) and IL-based composites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
An investigation of the low-frequency (i.e., less than 5 THz), inter-molecular dynamics of three imidazolium-based ionic liquids-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium dicyanamide ([C4mim][DCA]), and 1-ethyl-3-methylimidazolium dicyanamide ([C2mim][DCA])-is presented using two-dimensional (2D) Raman-THz spectroscopy combined with molecular dynamics (MD) simulations.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Instituto de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
Charge layering in the close vicinity of charged interfaces is a well-known effect, extensively reported in both experiments and simulations of Room Temperature Ionic Liquids (RTILs) and concentrated electrolytes. The traditional Poisson-Fermi (PF) theory is able to successfully describe overcrowding effects but fails to reproduce charge ordering even in strong coupling regimes. Simple models, yet capable of investigating the interplay between these important interfacial phenomena, are still lacking.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
CO capture is an important process for mitigating CO emissions in the atmosphere. Recently, ionic liquids have been identified as possible systems for CO capture processes. Major drawbacks of such systems are mostly in the high cost of synthesis of such liquids and poor biodegradability.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China.
The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!