AI Article Synopsis

  • Supercapacitors with high energy and power densities are in high demand, and ionic liquids (ILs) are seen as promising electrolytes due to their stability and thermal properties.
  • However, conventional ILs have high viscosity and low conductivity at room temperature, which hinders their performance in energy storage applications.
  • To address this, a new binary ionic liquids hybrid electrolyte was developed by mixing two types of ILs in an organic solvent, resulting in improved conductivity, reduced viscosity, and enhanced performance of supercapacitors compared to traditional organic electrolyte-based devices.

Article Abstract

Supercapacitors with high energy and power densities have become highly desirable in practical applications. Ionic liquids (ILs) are considered as promising electrolytes of supercapacitors owing to their excellent electrochemical stability window (approx. 4-6 V) and good thermal stability. However, the high viscosity (up to 10 mPa s) and low electric conductivity (<10 mS cm) at room-temperature extremely reduce the ion diffusion dynamics in the energy storage process, resulting in the unsatisfactory power density and rate performance of supercapacitors. Herein we propose a novel binary ionic liquids (BILs) hybrid electrolyte composed of two kinds of ILs in an organic solvent. Along with the organic solvent with high dielectric constant and low viscosity, the addition of binary cations effectively improves the electric conductivity and reduces the viscosity of IL electrolytes. By mixing trimethyl propylammonium bis(trifluoromethanesulfonyl)imide ([TMPA][TFSI]) and -butyl--methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([Pyr][TFSI]) with an equal mole ratio in acetonitrile (1 M), the as-prepared BILs electrolyte shows superior electric conductivity (44.3 mS cm), low viscosity (0.692 mPa s), and a wide electrochemical stability window (4.82 V). The supercapacitors assembled with activated carbon electrodes (commercial mass loading) and this BILs electrolyte achieve a high working voltage of 3.1 V, leading to a maximum energy density of 28.3 W h kg at 803.35 W kg and a maximum power density of 32.16 kW kg at 21.17 W h kg, which are obviously superior to those of commercial supercapacitors based on organic electrolytes (2.7 V).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206612PMC
http://dx.doi.org/10.1039/d3ra01634jDOI Listing

Publication Analysis

Top Keywords

ionic liquids
8
supercapacitors high
8
high energy
8
energy power
8
binary ionic
4
liquids hybrid
4
hybrid electrolyte
4
electrolyte based
4
based supercapacitors
4
power density
4

Similar Publications

Understanding the arrangement of ionic liquids at the interface and their interactions with the surface is crucial for enhancing selectivity in heterogeneous reactions for practical applications. In this study, we investigate the nature of the adsorption and structural orientations of a sulfonyl-based ionic liquid on platinum-based mono- and bimetallic (111) surfaces employing replica exchange molecular dynamics and first-principles density functional theory calculations. More than 30 confirmations of the ionic liquid are identified on both monometallic and bimetallic surfaces.

View Article and Find Full Text PDF

Correction for 'Structure, dynamic, and free energy analyses of 5-hydroxymethylfurfural in aprotic solvents and imidazolium ionic liquids using all-atom molecular dynamics simulations' by Sweta Jha , , 2024, , 28417-28430, https://doi.org/10.1039/D4CP02914C.

View Article and Find Full Text PDF

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Exploring Biophysical and Chemoinformatics Approaches for Interactions of Ionic Liquids with Hemoglobin, DNA, BSA, and HSA.

Chem Biodivers

January 2025

SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.

This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!