Low availability of phosphorus (P) in both acidic and alkaline soils is a major problem for sustainable improvement in wheat crops yield. Optimization of crops productivity can be achieved by increasing the bioavailability of P by phosphate solubilizing (PSA). However, their effectiveness may vary with changing agro-climatic conditions. In this regard, a greenhouse experiment was conducted to assess the interaction inoculation of five potential PSA (P16-P18-BC3-BC10 and BC11) and RPs (RP1- RP2-RP3 and RP4) on the growth and yield of wheat crop in unsterilized P- deficient alkaline and acidic soils. Their performance was compared with single super phosphate (TSP) and reactive RP (BG4). The tests showed that all PSA colonize wheat root and form a strong biofilm except strain P16. Our findings revealed that all PSA significantly improve the shoot/root dry weights, spike biomass, chlorophyll contents as well as nutrients uptake in plants fertilized with RP3 and RP4. However, the combined application of BC11 along with RP4 in alkaline soil, was effective in optimizing wheat yield attributes and improve the yield biomass up to 19.7% as compared to the triple superphosphate (TSP). This study supports the view that the inoculation with BC11 has a broad RP solubilization and could alleviate the agricultural losses due to P limitation in acidic and alkaline soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206120 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1154372 | DOI Listing |
Plants (Basel)
December 2024
Institut für Angewandte Wissenschaft, Ausbau 5, 18258 Rukieten, Germany.
Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico.
Bacteria associated with plants, whether rhizospheric, epiphytic, or endophytic, play a crucial role in plant productivity and health by promoting growth through complex mechanisms known as plant growth promoters. This study aimed to isolate, characterize, identify, and evaluate the potential of endophytic bacteria from the resurrection plant in enhancing plant growth, using ecotype Col. 0 as a model system.
View Article and Find Full Text PDFMicroorganisms
December 2024
Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh.
Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant bacterium, CRB14.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.
View Article and Find Full Text PDFMicroorganisms
December 2024
Changsha Comprehensive Survey Center of Natural Resources, China Geological Survey, Changsha 410600, China.
The phosphorus (P) availability in soils is influenced by microbes, particularly those containing the gene responsible for phosphate solubilization. The present study investigated the community structure, diversity, and co-occurrence networks of -harboring bacteria in karst and non-karst citrus orchard soils across a planting duration gradient, natural forests, and abandoned land, as well as the soil total P (TP) and available P (AP) contents and enzyme activities. The soil AP contents were lower in the karst regions than in the non-karst regions, while the soil organic carbon (C; SOC), exchangeable calcium, and microbial biomass nitrogen (N) contents; alkaline phosphatase (ALP) and β-Glucuronidase activities; and pH had the opposite trends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!