Root phenotypic parameters are the important basis for studying the growth state of plants, and root researchers obtain root phenotypic parameters mainly by analyzing root images. With the development of image processing technology, automatic analysis of root phenotypic parameters has become possible. And the automatic segmentation of roots in images is the basis for the automatic analysis of root phenotypic parameters. We collected high-resolution images of cotton roots in a real soil environment using minirhizotrons. The background noise of the minirhizotron images is extremely complex and affects the accuracy of the automatic segmentation of the roots. In order to reduce the influence of the background noise, we improved OCRNet by adding a Global Attention Mechanism (GAM) module to OCRNet to enhance the focus of the model on the root targets. The improved OCRNet model in this paper achieved automatic segmentation of roots in the soil and performed well in the root segmentation of the high-resolution minirhizotron images, achieving an accuracy of 0.9866, a recall of 0.9419, a precision of 0.8887, an F1 score of 0.9146 and an Intersection over Union (IoU) of 0.8426. The method provided a new approach to automatic and accurate root segmentation of high-resolution minirhizotron images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207899 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1147034 | DOI Listing |
Eur Radiol
January 2025
Department of Radiology, University of Groningen, University Medical Center of Groningen, Groningen, The Netherlands.
Objective: To evaluate the repeatability of AI-based automatic measurement of vertebral and cardiovascular markers on low-dose chest CT.
Methods: We included participants of the population-based Imaging in Lifelines (ImaLife) study with low-dose chest CT at baseline and 3-4 month follow-up. An AI system (AI-Rad Companion chest CT prototype) performed automatic segmentation and quantification of vertebral height and density, aortic diameters, heart volume (cardiac chambers plus pericardial fat), and coronary artery calcium volume (CACV).
Neuroimage
January 2025
School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; National Innovation Platform for industry-Education Integration in Medicine-Engineering Interdisciplinary, Shandong Key Laboratory for Magnetic Field-free Medicine and Functional Imaging, Shandong University, Research Institute of Shandong University, Jinan, 250014, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:
The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments.
View Article and Find Full Text PDFPhys Med
January 2025
Department of Medical Physics, Faculty of Medicine, University of Crete, P.O. Box 2208, 71003 Iraklion, Crete, Greece.
Purpose: To investigate the performance of a machine learning-based segmentation method for treatment planning of gastric cancer.
Materials And Methods: Eighteen patients planned to be irradiated for gastric cancer were studied. The target and the surrounding organs-at-risk (OARs) were manually delineated on CT scans.
Med Image Anal
December 2024
Stomatology Hospital Affliated to Zhejiang University of Medicine, Zhejiang University, Hangzhou, 310016, China; ZJU-Angelalign R&D Center for Intelligence Healthcare, ZJU-UIUC Institute, Zhejiang University, Haining, 314400, China; Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Automatic 3-dimensional tooth segmentation on intraoral scans (IOS) plays a pivotal role in computer-aided orthodontic treatments. In practice, deploying existing well-trained models to different medical centers suffers from two main problems: (1) the data distribution shifts between existing and new centers, which causes significant performance degradation. (2) The data in the existing center(s) is usually not permitted to be shared, and annotating additional data in the new center(s) is time-consuming and expensive, thus making re-training or fine-tuning unfeasible.
View Article and Find Full Text PDFMagn Reson Med
January 2025
School of Medicine and Health, Institute for Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany.
Purpose: In brain tumors, disruption of the blood-brain barrier (BBB) indicates malignancy. Clinical assessment is qualitative; quantitative evaluation is feasible using the K leakage parameter from dynamic susceptibility contrast MRI. However, contrast agent-based techniques are limited in patients with renal dysfunction and insensitive to subtle impairments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!