Wastewater from shrimp farming is rich in organic material, solids, and nutrients, which cause a series of environmental problems when released into the environment. Currently, for the removal of nitrogen compounds from wastewater, among the most studied methods is biological denitrification. The objective of this study was to evaluate the operational parameters for the development of a more sustainable technology for the removal of nitrogen compounds from shrimp farm wastewater, using Bambusa tuldoides (a species of bamboo) as a source of carbon and a material conducive to the development of selected denitrifying bacteria. To optimize the process, biological denitrification assays were performed varying the following parameters: bamboo length (cm), pH, temperature, and stoichiometric proportions of C and N. The operational stability of the process with the reuse of the bamboo biomass was also evaluated. Cronobacter sakazakii and Bacillus cereus were identified as denitrifying microorganisms present in reactor with bamboo biomass. The best operational conditions observed were pH 6 to 7 and temperature 30 to 35 °C, and the addition of an external carbon source was not necessary for the denitrification process to occur efficiently. Under these conditions, biological denitrification occurred with an average efficiency above 90% based on the removal of the nitrogen contaminants evaluated (NO-N and NO-N). Regarding operational stability, 8 cycles were performed using the same source of carbon without reducing the efficiency of the process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-11351-1DOI Listing

Publication Analysis

Top Keywords

biological denitrification
16
removal nitrogen
12
sustainable technology
8
bambusa tuldoides
8
shrimp farming
8
nitrogen compounds
8
source carbon
8
operational stability
8
bamboo biomass
8
denitrification
5

Similar Publications

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

Nitrogen heterocyclic antibiotics (NHAs) pollution poses a significant threat to aquatic ecosystems. Ozonation (O) pretreatment is beneficial for the removal of total nitrogen (TN) in antibiotics by facilitating subsequent biological treatment. However, nitrogen transformation and bacterial community responses when treating NHAs by O-coupled biological processes remain unclear.

View Article and Find Full Text PDF

The degradation of antibiotic wastewater by low-temperature plasma and the removal of excess nitrogen by biological denitrification with Pseudomonas stutzeri (P. stutzeri) reducing secondary pollution has rarely been reported. In this study, iron and phenolic resin doped carbon-based porous nanofiber membranes are prepared (named RFe-CNF) by electrostatic spinning technique, where the optimization of structure and composition endows low-temperature plasma system better catalyst performance than that of without catalyst (a 58% increase).

View Article and Find Full Text PDF

Research on low dissolved oxygen (DO) enhanced biological phosphorus removal (EBPR) at full-scale remains limited, a knowledge gap this study aims to fill by investigating EBPR performance and microbial community shifts at a Water Resource Recovery Facility (WRRF) transitioning to low DO conditions. Average DO concentrations decreased from 2.62 mg O/L in 2019 to 0.

View Article and Find Full Text PDF

Groundwater is widely threatened by hazardous manganese and ammonia. In present study, a novel gravity-driven fixed-bed ceramic membrane filtration (GDFBCM) with critical PAC-MnOx-ceramsite filters was built to address these issues. Static ceramsite filters in GDCM significantly increased membrane flux from 11 L/m·h to 18 L/m·h on the 50th day of filtration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!