Human breast milk (HBM)-derived exosomes contain various biological and immunological components. However, comprehensive immune-related and antimicrobial factor analysis requires transcriptomic, proteomic, and multiple databases for functional analyses, and has yet to be conducted. Therefore, we isolated and confirmed HBM-derived exosomes by detecting specific markers and examining their morphology using western blot and transmission electron microscopy. Moreover, we implemented small RNA sequencing and liquid chromatography-mass spectrometry to investigate substances within the HBM-derived exosomes and their roles in combating pathogenic effects, identifying 208 miRNAs and 377 proteins associated with immunological pathways and diseases. Integrated omics analyses identified a connection between the exosomal substances and microbial infections. In addition, gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that HBM-derived exosomal miRNA and proteins influence immune-related functions and pathogenic infections. Finally, protein-protein interaction analysis identified three primary proteins (ICAM1, TLR2, and FN1) associated with microbial infections mediating pro-inflammation, controlling infection, and facilitating microbial elimination. Our findings determine that HBM-derived exosomes modulate the immune system and could offer therapeutic strategies for regulating pathogenic microbial infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221093 | PMC |
http://dx.doi.org/10.3390/metabo13050635 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!