Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane separation due to their uniform pore size and high designability. Notably, pure MOF films and MOF mixed matrix membranes (MMMs) are the core of the "next generation" MOF materials. However, there are some tough issues with MOF-based membranes that affect separation performance. For pure MOF membranes, problems such as framework flexibility, defects, and grain orientation need to be addressed. Meanwhile, there still exist bottlenecks for MMMs such as MOF aggregation, plasticization and aging of the polymer matrix, poor interface compatibility, etc. Herein, corresponding methods are introduced to solve these problems, including inhibiting framework flexibility, regulating synthesis conditions, and enhancing the interaction between MOF and substrate. A series of high-quality MOF-based membranes have been obtained based on these techniques. Overall, these membranes revealed desired separation performance in both gas separation (e.g., CO, H, and olefin/paraffin) and liquid separation (e.g., water purification, organic solvent nanofiltration, and chiral separation).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221405PMC
http://dx.doi.org/10.3390/membranes13050480DOI Listing

Publication Analysis

Top Keywords

mof-based membranes
12
separation
9
liquid separation
8
mof materials
8
pure mof
8
separation performance
8
framework flexibility
8
mof
7
membranes
6
engineering metal-organic-framework
4

Similar Publications

Recent innovations in strategies to prepare metal-organic framework-based mixed matrix membranes.

Chem Commun (Camb)

January 2025

Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.

Mixed matrix membranes (MMMs) composed of metal-organic frameworks (MOFs) and polymer matrixes have garnered significant attention due to their potential to overcome the permeability-selectivity trade-off inherent in polymeric membranes. Nevertheless, the application and industrial production of MOF-based MMMs have been hindered by issues such as poor interfacial compatibility and cumbersome fabrication processes. Recently, strategies have emerged as promising approaches for fabricating MOF-based MMMs, offering enhanced interfacial compatibility between MOF fillers and polymers, as well as a simplified construction process.

View Article and Find Full Text PDF

Molecular dynamics simulations reveal efficient heavy metal ion removal by two-dimensional Cu-THQ metal-organic framework membrane.

Sci Rep

January 2025

Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.

Two-dimensional (2D) metal-organic frameworks (MOFs) have been extensively utilized across various research areas. However, the application of 2D MOF-based membranes for the removal of heavy metal ions remains largely unexplored, despite their potential as suitable candidates due to their inherent porosity. In this study, we employed molecular dynamics (MD) simulations to investigate the capacity of a typical 2D MOF, Cu-THQ, for the separation of heavy metal ions, including Cd²⁺, Cu²⁺, Hg²⁺, and Pb²⁺.

View Article and Find Full Text PDF

MOF-Based Dual-Layer Pickering Emulsion: Molecular-Level Gating of Water Delivery at Water-Oil Interface for Efficient Photocatalytic Hydrogenation Using HO as a Hydrogen Source.

Angew Chem Int Ed Engl

January 2025

Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.

Article Synopsis
  • The biphasic system offers a unique approach for complex catalytic processes by combining photocatalysis with hydrogenation, highlighting both its potential and accompanying challenges.
  • Researchers utilized metal-organic frameworks (MOFs) and CdS nanorods to create a dual-layer Pickering emulsion that effectively separates the photocatalytic hydrogen evolution reaction (HER) in the aqueous phase from oil-soluble hydrogenation.
  • This innovative setup achieved an impressive hydrogenation yield of 187.37 mmol·g-1·h-1 and a high apparent quantum yield of 43.24%, demonstrating significant improvements over traditional methods and providing valuable insights for future tandem catalytic processes.
View Article and Find Full Text PDF

MOF-Based Guided Bone Regeneration Membrane for Promoting Osteogenesis by Regulating Bone Microenvironment through Cascade Effects.

Adv Healthc Mater

December 2024

Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Article Synopsis
  • The regulation of the bone microenvironment, including pH levels and metal ions, is crucial for the functions of osteoblasts and osteoclasts, which play a key role in bone regeneration.
  • A newly designed resorbable bone regeneration membrane (PCL/DEX@Ca-Zol) combines a drug-loaded metal-organic framework to address challenges in enhancing osteogenesis effectively.
  • The membrane releases calcium ions, zoledronic acid, and dexamethasone in response to acidic conditions at bone defects, helping to normalize pH, promote bone cell differentiation, and inhibit bone resorption, leading to improved bone regeneration with fewer side effects.
View Article and Find Full Text PDF

A Metal-Organic Framework-Based Colorimetric Sensor Array for Transcutaneous CO Monitoring via Lensless Imaging.

Biosensors (Basel)

October 2024

McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA.

Transcutaneous carbon dioxide (TcPCO2) monitoring provides a non-invasive alternative to measuring arterial carbon dioxide (PaCO2), making it valuable for various applications, such as sleep diagnostics and neonatal care. However, traditional transcutaneous monitors are bulky, expensive, and pose risks such as skin burns. To address these limitations, we have introduced a compact, cost-effective CMOS imager-based sensor for TcPCO2 detection by utilizing colorimetric reactions with metal-organic framework (MOF)-based nano-hybrid materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!