As the world produces exabytes of data, there is a growing need to find new methods that are more suitable for dealing with complex datasets. Artificial intelligence (AI) has significant potential to impact the healthcare industry, which is already on the road to change with the digital transformation of vast quantities of information. The implementation of AI has already achieved success in the domains of molecular chemistry and drug discoveries. The reduction in costs and in the time needed for experiments to predict the pharmacological activities of new molecules is a milestone in science. These successful applications of AI algorithms provide hope for a revolution in healthcare systems. A significant part of artificial intelligence is machine learning (ML), of which there are three main types-supervised learning, unsupervised learning, and reinforcement learning. In this review, the full scope of the AI workflow is presented, with explanations of the most-often-used ML algorithms and descriptions of performance metrics for both regression and classification. A brief introduction to explainable artificial intelligence (XAI) is provided, with examples of technologies that have developed for XAI. We review important AI implementations in cardiology for supervised, unsupervised, and reinforcement learning and natural language processing, emphasizing the used algorithm. Finally, we discuss the need to establish legal, ethical, and methodical requirements for the deployment of AI models in medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219176 | PMC |
http://dx.doi.org/10.3390/jcdd10050202 | DOI Listing |
Brief Bioinform
November 2024
Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).
View Article and Find Full Text PDFAccurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
SSM Popul Health
March 2025
Dalla Lana School of Public Health, University of Toronto, Health Sciences Building, 155 College Street, 6th Floor, Toronto, Ontario, M5T 3M7, Canada.
Background: Multimorbidity, the co-occurrence of two or more chronic conditions, is associated with the social determinants of health. Using comprehensive linked population-representative data, we sought to understand the combined effect of multiple social determinants on multimorbidity incidence in Ontario, Canada.
Methods: Ontario respondents aged 20-55 in 2001-2011 cycles of the Canadian Community Health Survey were linked to administrative health data ascertain multimorbidity status until 2022.
World J Gastrointest Endosc
January 2025
Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
Background: Recent advancements in artificial intelligence (AI) have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases. AI has shown great promise in clinical practice, particularly for diagnostic support, offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.
Case Summary: In this study, we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy, highlighting its potential for early detection of malignancies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!