Artificial Intelligence Technologies in Cardiology.

J Cardiovasc Dev Dis

Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75, 85-168 Bydgoszcz, Poland.

Published: May 2023

As the world produces exabytes of data, there is a growing need to find new methods that are more suitable for dealing with complex datasets. Artificial intelligence (AI) has significant potential to impact the healthcare industry, which is already on the road to change with the digital transformation of vast quantities of information. The implementation of AI has already achieved success in the domains of molecular chemistry and drug discoveries. The reduction in costs and in the time needed for experiments to predict the pharmacological activities of new molecules is a milestone in science. These successful applications of AI algorithms provide hope for a revolution in healthcare systems. A significant part of artificial intelligence is machine learning (ML), of which there are three main types-supervised learning, unsupervised learning, and reinforcement learning. In this review, the full scope of the AI workflow is presented, with explanations of the most-often-used ML algorithms and descriptions of performance metrics for both regression and classification. A brief introduction to explainable artificial intelligence (XAI) is provided, with examples of technologies that have developed for XAI. We review important AI implementations in cardiology for supervised, unsupervised, and reinforcement learning and natural language processing, emphasizing the used algorithm. Finally, we discuss the need to establish legal, ethical, and methodical requirements for the deployment of AI models in medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219176PMC
http://dx.doi.org/10.3390/jcdd10050202DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
reinforcement learning
8
learning
5
artificial
4
intelligence technologies
4
technologies cardiology
4
cardiology produces
4
produces exabytes
4
exabytes data
4
data growing
4

Similar Publications

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

Accurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.

View Article and Find Full Text PDF

AI comes to the Nobel Prize and drug discovery.

J Pharm Anal

November 2024

College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

View Article and Find Full Text PDF

The association between total social exposure and incident multimorbidity: A population-based cohort study.

SSM Popul Health

March 2025

Dalla Lana School of Public Health, University of Toronto, Health Sciences Building, 155 College Street, 6th Floor, Toronto, Ontario, M5T 3M7, Canada.

Background: Multimorbidity, the co-occurrence of two or more chronic conditions, is associated with the social determinants of health. Using comprehensive linked population-representative data, we sought to understand the combined effect of multiple social determinants on multimorbidity incidence in Ontario, Canada.

Methods: Ontario respondents aged 20-55 in 2001-2011 cycles of the Canadian Community Health Survey were linked to administrative health data ascertain multimorbidity status until 2022.

View Article and Find Full Text PDF

Multimodal artificial intelligence system for detecting a small esophageal high-grade squamous intraepithelial neoplasia: A case report.

World J Gastrointest Endosc

January 2025

Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.

Background: Recent advancements in artificial intelligence (AI) have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases. AI has shown great promise in clinical practice, particularly for diagnostic support, offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.

Case Summary: In this study, we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy, highlighting its potential for early detection of malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!