The aim of this study was to evaluate the effect of vehicle and chemical modifications of the structure of active compounds on the skin permeation and accumulation of ibuprofen (IBU). As a result, semi-solid formulations in the form of an emulsion-based gel loaded with ibuprofen and its derivatives, such as sodium ibuprofenate (IBUNa) and L-phenylalanine ethyl ester ibuprofenate ([PheOEt][IBU]), were developed. The properties of the obtained formulations were examined, including density, refractive index, viscosity, and particle size distribution. The parameters of release and permeability through the pig skin of the active substances contained in the obtained semi-solid formulations were determined. The results indicate that an emulsion-based gel enhanced the skin penetration of IBU and its derivatives compared to two commercial preparations in the form of a gel and a cream. The average cumulative mass of IBU after a 24 h permeation test from an emulsion-based gel formulation through human skin was 1.6-4.0 times higher than for the commercial products. Ibuprofen derivatives were evaluated as chemical penetration enhancers. After 24 h of penetration, the cumulative mass was 1086.6 ± 245.8 for IBUNa and 948.6 ± 87.5 µg IBU/cm for [PheOEt][IBU], respectively. This study demonstrates the perspective of the transdermal emulsion-based gel vehicle in conjunction with the modification of the drug as a potentially faster drug delivery system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217311 | PMC |
http://dx.doi.org/10.3390/gels9050391 | DOI Listing |
AAPS PharmSciTech
December 2024
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
Food Res Int
December 2024
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
3D printing ready-to-eat emulsions using trans-fat-free edible oil, presents a significant challenge due to the complexities involved in achieving the necessary material structure, rheological properties, and stability. This study fabricated High Internal Phase Emulsions (HIPEs) stabilized with citrus fibers and octenyl succinic anhydride (OSA) modified waxy starch, serving as the printable inks for 3D-printable elderly foods. These printable inks exhibited a pseudoplastic gel structure, which provided enhanced extrudability and improved shape retention.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, 4410240, Egypt.
Introduction: Atorvastatin (ATV), a medication used to reduce cholesterol levels, possesses properties that can counteract the damaging effects of free radicals and reduce inflammation. However, the administration of ATV orally is associated with low systemic bioavailability due to its limited capacity to dissolve in water and significant first-pass effect. This study aimed to assess the appropriateness of employing nano-vesicles for transdermal administration of ATV in order to enhance its anti-inflammatory effects.
View Article and Find Full Text PDFInt J Pharm
December 2024
Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China. Electronic address:
To improve the retention time and skin-whitening efficacy of Atractylodes macrocephale essential oil (AMO), a novel Pickering emulsion based nanogel loaded with AMO (AMO-PEG) was successfully developed. This formulation employed nano-pearl powder (NPP) as the particle stabilizer for the Pickering emulsion and Bletilla striata polysaccharide (BSP) as the gel matrix. The pH, rheological properties, hardness, and elasticity of AMO-PEG were affected by the ratio of AMO-Pickering emulsion (AMO-PE) to BSP gel matrix.
View Article and Find Full Text PDFFood Chem
January 2025
Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province/Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei 230601, China; School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!