A model (sucrose and gallic acid) solution was concentrated by block freeze concentration (BFC) at three centrifugation cycles, and the solutions were encapsulated in calcium alginate and corn starch calcium alginate hydrogel beads. Static and dynamic tests determined the rheological behavior, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) established thermal and structural properties, and the release kinetics was evaluated under in vitro simulated digestion experiment. The highest efficiency encapsulation value was close to 96%. As the concentrated solution increased in terms of solutes and gallic acid, the solutions were fitted to the Herschel-Bulkley model. Moreover, from the second cycle, the solutions exhibited the highest values of storage modulus (G') and loss modulus (G″), contributing to form a more stable encapsulation. The FTIR and DSC results demonstrated strong interactions between corn starch and alginate, establishing a good compatibility and stability in the bead formation. The kinetic release model under in vitro conditions was fitted to the Korsmeyer-Peppas model, demonstrating the significant stability of the model solutions inside the beads. Therefore, the present study proposes a clear and precise definition for the elaboration of liquid foods obtained by BFC and its incorporation inside an edible material that facilitates the controlled release in specific sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217800 | PMC |
http://dx.doi.org/10.3390/gels9050374 | DOI Listing |
Mol Biol Rep
January 2025
Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:
Stem Cells Cloning
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!