Biofuel is an attractive substitute for petrodiesel because of its lower environmental footprint. For instance, the polycyclic aromatic hydrocarbons (PAH) emission per fuel energy content is lower for rapeseed methyl ester (RME) than for petrodiesel. This study assesses genotoxicity by extractable organic matter (EOM) of exhaust particles from the combustion of petrodiesel, RME, and hydrogenated vegetable oil (HVO) in lung epithelial (A549) cells. Genotoxicity was assessed as DNA strand breaks by the alkaline comet assay. EOM from the combustion of petrodiesel and RME generated the same level of DNA strand breaks based on the equal concentration of total PAH (i.e. net increases of 0.13 [95% confidence interval (CI): 0.002, 0.25, and 0.12 [95% CI: 0.01, 0.24] lesions per million base pairs, respectively). In comparison, the positive control (etoposide) generated a much higher level of DNA strand breaks (i.e. 0.84, 95% CI: 0.72, 0.97) lesions per million base pairs. Relatively low concentrations of EOM from RME and HVO combustion particles (<116 ng/ml total PAH) did not cause DNA strand breaks in A549 cells, whereas benzo[a]pyrene and PAH-rich EOM from petrodiesel combusted using low oxygen inlet concentration were genotoxic. The genotoxicity was attributed to high molecular weight PAH isomers with 5-6 rings. In summary, the results show that EOM from the combustion of petrodiesel and RME generate the same level of DNA strand breaks on an equal total PAH basis. However, the genotoxic hazard of engine exhaust from on-road vehicles is lower for RME than petrodiesel because of lower PAH emission per fuel energy content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/mutage/gead016 | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Research Centre for Medical Genetics, 115522 Moscow, Russia.
Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).
View Article and Find Full Text PDFCureus
November 2024
Rheumatology, King Saud Medical City, Riyadh, SAU.
Background Systemic lupus erythematosus (SLE) is a chronic autoimmune disease associated with increased cardiovascular risk, partly due to dyslipidemia. This study aimed to evaluate the lipid profiles of Saudi Arabian patients with SLE and examine the impact of hydroxychloroquine (HCQ) and steroid use on these profiles, with a particular focus on patients with lupus nephritis. Methods A retrospective observational study was conducted at King Saud Medical City, Riyadh, Saudi Arabia, including SLE patients treated at the hospital's rheumatology clinic between July 2023 and December 2023.
View Article and Find Full Text PDFMicroPubl Biol
December 2024
Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States.
We report the discovery and genome sequence of mycobacteriophage Eugenia, isolated from soil samples collected in Akron, OH. Eugenia is a double-stranded DNA virus with a genome size of 69,139 bp, featuring 104 predicted protein-encoding genes, with 32 of these genes assigned putative functions.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Department of General Surgery, Faculty of Medicine, Giresun University, Giresun, Turkiye.
Background/aim: To investigate the association between the rs2267437, rs5751129 and rs132770 polymorphisms of the gene, which plays a role in repairing DNA double-strand breaks, and the risk of papillary thyroid carcinoma (PTC).
Materials And Methods: The study included 150 patients who had been diagnosed with PTC and 204 healthy controls. Genotyping of the SNPs was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
Epigenetics Chromatin
December 2024
Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!