Abiraterone acetate has been clinically approved for the treatment of patients with advanced-stage prostate cancer. It reduces testosterone production by blocking the enzyme cytochrome P450 17 alpha-hydroxylase. Despite improved survival outcomes with abiraterone, almost all patients develop therapeutic resistance and disease recurrence, progressing to a more aggressive and lethal phenotype. Bioinformatics analyses predicted activation of canonical Wnt/β-catenin and involvement of stem cell plasticity in abiraterone-resistant prostate cancer. Increased expression of androgen receptor (AR) and β-catenin and their crosstalk causes activation of AR target genes and regulatory networks for which overcoming acquired resistance remains a major challenge. Here we show that co-treatment with abiraterone and ICG001, a β-catenin inhibitor, overcomes therapeutic resistance and significantly inhibited markers of stem cell and cellular proliferation in abiraterone-resistant prostate cancer cells. Importantly, this combined treatment abrogated the association between AR and β-catenin; diminished SOX9 expression from the complex more prominently in abiraterone-resistant cells. In addition, combined treatment inhibited tumor growth in an in vivo abiraterone-resistant xenograft model, blocked stemness, migration, invasion, and colony formation ability of cancer cells. This study opens new therapeutic opportunity for advanced-stage castration-resistant prostate cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.23565DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
therapeutic resistance
12
overcomes therapeutic
8
castration-resistant prostate
8
stem cell
8
abiraterone-resistant prostate
8
cancer cells
8
combined treatment
8
cancer
6
prostate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!