The hippocampal-entorhinal system supports cognitive function and is selectively vulnerable to Alzheimer's disease (AD). Little is known about global transcriptomic changes in the hippocampal-entorhinal subfields during AD. Herein, large-scale transcriptomic analysis is performed in five hippocampal-entorhinal subfields of postmortem brain tissues (262 unique samples). Differentially expressed genes are assessed across subfields and disease states, and integrated genotype data from an AD genome-wide association study. An integrative gene network analysis of bulk and single-nucleus RNA sequencing (snRNA-Seq) data identifies genes with causative roles in AD progression. Using a system-biology approach, pathology-specific expression patterns for cell types are demonstrated, notably upregulation of the A1-reactive astrocyte signature in the entorhinal cortex (EC) during AD. SnRNA-Seq data show that PSAP signaling is involved in alterations of cell- communications in the EC during AD. Further experiments validate the key role of PSAP in inducing astrogliosis and an A1-like reactive astrocyte phenotype. In summary, this study reveals subfield-, cell type-, and AD pathology-specific changes and demonstrates PSAP as a potential therapeutic target in AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401097 | PMC |
http://dx.doi.org/10.1002/advs.202300876 | DOI Listing |
Aging Dis
November 2024
Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.
Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) are neurodegenerative disorders characterized by the pathological deposition of amyloid-beta (Aβ) in the brain. Although both conditions share common pathogenic pathways, they exhibit distinct cellular manifestations and disease progression. This study focused on the differential expression and role of astrocytic colony-stimulating factor 1 (CSF1) in these diseases.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway.
The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown.
View Article and Find Full Text PDFCurr Biol
December 2024
University College London, Department of Cell and Developmental Biology, Gower Street, London WC1E 6BT, UK. Electronic address:
Concepts describe how instances of the same kind are related, enabling the categorization and interpretation of new information. How concepts are represented is a longstanding question. Category boundaries have been considered defining features of concept representations, which can guide categorical inference, with fMRI evidence showing category-boundary signals in the hippocampus.
View Article and Find Full Text PDFArXiv
June 2024
Redwood Center for Theoretical Neuroscience, UC Berkeley, Berkeley, USA.
We propose a normative model for spatial representation in the hippocampal formation that combines optimality principles, such as maximizing coding range and spatial information per neuron, with an algebraic framework for computing in distributed representation. Spatial position is encoded in a residue number system, with individual residues represented by high-dimensional, complex-valued vectors. These are composed into a single vector representing position by a similarity-preserving, conjunctive vector-binding operation.
View Article and Find Full Text PDFNat Commun
April 2024
Center for Mind/Brain Sciences, University of Trento, 38122, Trento, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!