Introduction: Treatment response to the standard therapy is low for metastatic pancreatic neuroendocrine tumors (PanNETs) mainly due to the tumor heterogeneity. We investigated the heterogeneity between primary PanNETs and metastases to improve the precise treatment.
Methods: The genomic and transcriptomic data of PanNETs were retrieved from the Genomics, Evidence, Neoplasia, Information, Exchange (GENIE), and Gene Expression Omnibus (GEO) database, respectively. Potential prognostic effects of gene mutations enriched in metastases were investigated. Gene set enrichment analysis was performed to investigate the functional difference. Oncology Knowledge Base was interrogated for identifying the targetable gene alterations.
Results: Twenty-one genes had significantly higher mutation rates in metastases which included TP53 (10.3% vs. 16.9%, p = 0.035) and KRAS (3.7% vs. 9.1%, p = 0.016). Signaling pathways related to cell proliferation and metabolism were enriched in metastases, whereas epithelial-mesenchymal transition (EMT) and TGF-β signaling were enriched in primaries. Gene mutations were highly enriched in metastases that had significant unfavorable prognostic effects included mutation of TP53 (p < 0.001), KRAS (p = 0.001), ATM (p = 0.032), KMT2D (p = 0.001), RB1 (p < 0.001), and FAT1 (p < 0.001). Targetable alterations enriched in metastases included mutation of TSC2 (15.5%), ARID1A (9.7%), KRAS (9.1%), PTEN (8.7%), ATM (6.4%), amplification of EGFR (6.0%), MET (5.5%), CDK4 (5.5%), MDM2 (5.0%), and deletion of SMARCB1 (5.0%).
Conclusion: Metastases exhibited a certain extent of genomic and transcriptomic diversity from primary PanNETs. TP53 and KRAS mutation in primary samples might associate with metastasis and contribute to a poorer prognosis. A high fraction of novel targetable alterations enriched in metastases deserves to be validated in advanced PanNETs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614458 | PMC |
http://dx.doi.org/10.1159/000530968 | DOI Listing |
Nat Commun
January 2025
Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Esophageal squamous cell carcinoma (ESCC) patients often face a grim prognosis due to lymph node metastasis. However, a comprehensive understanding of the cellular and molecular characteristics of metastatic lymph nodes in ESCC remains elusive. In this study involving 12 metastatic ESCC patients, we employed single-cell sequencing, spatial transcriptomics (ST), and multiplex immunohistochemistry (mIHC) to explore the spatial and molecular attributes of primary tumor samples, adjacent tissues, metastatic and non-metastatic lymph nodes.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
Background: Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune checkpoint inhibitors.
View Article and Find Full Text PDFFront Oncol
December 2024
Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
Introduction: The transcriptomic characteristics of + non-small cell lung cancer (NSCLC) represent a crucial aspect of its tumor biology. These features provide valuable insights into key dysregulated pathways, potentially leading to the discovery of novel targetable alterations or biomarkers.
Methods: From The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, all available + (n = 10), + (n = 5) and + (n = 5) NSCLC tumor and + cell line (n = 7) RNA-sequencing files were collected.
Bioinform Adv
December 2024
School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
Motivation: Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!