Introduction: Gap junctions can transmit signals between cells, including miRNAs, leading to the amplification of adjacent cell damage. No previous study has addressed gap junctions and miRNAs in sepsis because the internal mechanism of sepsis-induced intestinal injury is complex. Therefore, we studied the relationship between connexin43 (Cx43) and miR-181b and provided a research direction for further study of sepsis.

Methods: A mouse caecal ligation and puncture method was used to construct a mouse sepsis model. Firstly, damage to intestinal tissues at different time points was analysed. The levels of Cx43, miR-181b, Sirt1, and FOXO3a in intestinal tissues and the transcription and translation of the apoptosis-related genes Bim and puma, which are downstream of FOXO3a were analysed. Secondly, the effect of Cx43 levels on miR-181b and Sirt1/FOXO3a signalling pathway activity was explored by using the Cx43 inhibitor heptanol. Finally, luciferase assays were used to determine miR-181b binding to the predicted target sequence.

Results: The results show that during sepsis, intestinal injury becomes increasingly worse with time, and the expression of Cx43 and miR-181b increase. In addition, we found that heptanol could significantly reduce intestinal injury. This finding indicates that inhibiting Cx43 regulates the transfer of miR-181b between adjacent cells, thereby reducing the activity of the Sirt1/FOXO3a signalling pathway and reducing the degree of intestinal injury during sepsis.

Conclusions: In sepsis, the enhancement of Cx43 gap junctions leads to an increase in miR-181b intercellular transfer, affects the downstream SIRT1/FOXO3a signalling pathway and causes cell and tissue damage.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000529102DOI Listing

Publication Analysis

Top Keywords

intestinal injury
20
sirt1/foxo3a signalling
16
gap junctions
12
cx43 mir-181b
12
signalling pathway
12
intestinal tissues
8
intestinal
7
cx43
7
mir-181b
7
injury
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!