Follicular communication breakdown in aging ovaries.

Nat Aging

Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.

Published: June 2023

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43587-023-00435-9DOI Listing

Publication Analysis

Top Keywords

follicular communication
4
communication breakdown
4
breakdown aging
4
aging ovaries
4
follicular
1
breakdown
1
aging
1
ovaries
1

Similar Publications

Extracellular vesicles, or exosomes, are produced by every type of cell and contain metabolites, proteins, lipids, and nucleic acids. Their role in health and disease is to influence different aspects of cell biology and to act as intermediaries between cells. Follicular fluid exosomes or extracellular vesicles (FF-EVs) secreted by ovarian granulosa cells are critical mediators of ovary growth and maturation.

View Article and Find Full Text PDF

The Influence of Ovarian-Derived Extracellular Vesicles in Reproduction.

Adv Anat Embryol Cell Biol

January 2025

Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.

In this chapter, we explore the multifaceted roles of extracellular vesicles (EVs) in ovarian biology, focusing on their contributions to folliculogenesis, oocyte competence, corpus luteum function, and immune response regulation. EVs, particularly those derived from follicular fluid (ffEVs), are crucial mediators of cell-to-cell communication within the ovarian follicle, influencing processes such as meiotic progression, stress response, and hormonal regulation. We review preexisting literature, highlighting key findings on the molecular cargo of EVs, such as miRNAs and proteins, and their involvement in regulating the function of the follicle cells.

View Article and Find Full Text PDF

Genetic loss of Uchl1 leads to female infertility by affecting oocyte quality and follicular development.

Mol Cell Endocrinol

February 2025

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Clinical Medical School, Fudan University, Shanghai, China. Electronic address:

Research Question: Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme specifically highly expressed in the brain and gonads. Inhibition of UCHL1 hydrolase activity impairs oocyte maturation. Uchl1 knockout mice exhibit reproductive dysfunction, but the underlying pathogenesis remains unclear.

View Article and Find Full Text PDF

Unraveling the complexity of follicular fluid: insights into its composition, function, and clinical implications.

J Ovarian Res

November 2024

School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330019, China.

Follicular fluid (FF) plays a vital role in the bidirectional communication between oocytes and granulosa cells (GCs), regulating and promoting oocyte growth and development. This fluid constitutes a complex microenvironment, rich in various molecules including hormones, growth factors, cytokines, lipids, proteins, and extracellular vesicles. Understanding the composition and metabolic profile of follicular fluid is important for investigating ovarian pathologies such as polycystic ovary syndrome (PCOS) and endometriosis.

View Article and Find Full Text PDF

Sensory neuron LKB1 mediates ovarian and reproductive function.

Sci Rep

November 2024

Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX, 75080, USA.

Treatments for reproductive disorders in women consist of hormone replacement therapy, which have negative side effects that impact health, spurring the need to understand new mechanisms to employ new therapeutic strategies. Bidirectional communication between sensory neurons and the organs they innervate is an emerging area of interest in tissue physiology with a relevance in reproductive disorders. We hypothesized that the metabolic activity of sensory neurons has a profound effect on reproductive phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!