Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major catalyst in the conversion of carbon dioxide into organic compounds in photosynthetic organisms. However, its activity is impaired by binding of inhibitory sugars such as xylulose-1,5-bisphosphate (XuBP), which must be detached from the active sites by Rubisco activase. Here, we show that loss of two phosphatases in Arabidopsis thaliana has detrimental effects on plant growth and photosynthesis and that this effect could be reversed by introducing the XuBP phosphatase from Rhodobacter sphaeroides. Biochemical analyses revealed that the plant enzymes specifically dephosphorylate XuBP, thus allowing xylulose-5-phosphate to enter the Calvin-Benson-Bassham cycle. Our findings demonstrate the physiological importance of an ancient metabolite damage-repair system in degradation of by-products of Rubisco, and will impact efforts to optimize carbon fixation in photosynthetic organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212915 | PMC |
http://dx.doi.org/10.1038/s41467-023-38804-y | DOI Listing |
Foods
January 2025
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Litchi is one of the ancient fruits that originated in China, renowned for its high nutrition and rich flavor, and Xianjinfeng (XJF) stands as one of the most notable varieties in terms of its flavor. Investigating the metabolic changes in taste compounds during fruit development offers deeper insights into the formation patterns of fruit quality. In this study, we conducted extensive metabonomic research on the accumulation patterns of taste compounds (carbohydrates, organic acids, and amino acids) across three developmental stages of XJF litchi.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Science and Technology for Sustainable Development and One Health, Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Rome, 00128, Italy.
Defined by the World Health Organization (WHO) as indigenous knowledge and practices used for maintaining health and treating illnesses, traditional medicine (TM) represents a rich reservoir of ancient healing practices rooted in cultural traditions and accumulated wisdom over centuries. Five indigenous Kenyan plant species traditionally used in African TM, named Afzelia quanzensis, Azadirachta indica, Gigasiphon macrosiphon, Grewia bicolor, and Lannea schweinfurthii, represent a valuable resource in healing practices, yet their chemical composition and bioactivity remain understudied. To depict a primary bio-chemical characterization of these plants, their antioxidant and antimicrobial features have been evaluated by the use of methods validated in this context.
View Article and Find Full Text PDFMetabolites
December 2024
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in from rice paddies were considerably higher compared to those from ponds.
View Article and Find Full Text PDFMetabolites
November 2024
Institute of Plant Conservation, Hunan Botanical Garden, Changsha 411006, China.
var. is an ancient relic plant unique to China. However, the typical shade-loving plant is largely exposed to the sun, which poses a major challenge to its conservation.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy. Electronic address:
Pink biofilm formation on stone monuments and mural paintings poses serious harm to cultural heritage preservation. Pink biofilms are globally widespread and recalcitrant to eradication, often causing recurrences after restoration. Yet, the ecological drivers of pink biofilm formation and the metabolic functions sustaining the growth of pigment-producing biodeteriogens remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!