Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, an iterative neural network adaptive robust control (INNARC) strategy is proposed for the maglev planar motor (MLPM) to achieve good tracking performance and uncertainty compensation. The INNARC scheme consists of adaptive robust control (ARC) term and iterative neural network (INN) compensator in a parallel structure. The ARC term founded on the system model realizes the parametric adaptation and promises the closed-loop stability. The INN compensator based on the radial basis function (RBF) neural network is employed to handle the uncertainties resulted from the unmodeled non-linear dynamics in the MLPM. Additionally, the iterative learning update laws are introduced to tune the network parameters and weights of the INN compensator simultaneously, so the approximation accuracy is improved along the system repetition. The stability of the INNARC method is proved via the Lyapunov theory, and the experiments are conducted on an home-made MLPM. The results consistently demonstrate that the INNARC strategy possesses the satisfactory tracking performance and uncertainty compensation, and the proposed INNARC is an effective and systematic intelligent control method for MLPM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2023.05.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!