Abnormal expression of hydrogen peroxide (HO) elucidates cell dysfunctions and might induce the occurrence and deterioration of various diseases. However, limited by its ultralow level under pathophysiological conditions, intracellular and extracellular HO was difficult to be detected accurately. Herein, a colorimetric and homogeneous electrochemical dual-mode biosensing platform was constructed for intracellular/extracellular HO detection based on FeS/SiO nanoparticles (FeS/SiO NPs) with high peroxidase-like activity. In this design, FeS/SiO NPs were synthesized with excellent catalytic activity and stability compared to natural enzymes, which improved the sensitivity and stability of sensing strategy. 3,3',5,5'-Tetramethylbenzidine (TMB), as a multifunctional indicator, was oxidized in the presence of HO, generated color changes and realized visual analysis. In this process, the characteristic peak current of TMB decreased, which could realize the ultrasensitive detection of HO by homogeneous electrochemistry. Accordingly, by integrating visual analysis ability of colorimetry and the high sensitivity of homogeneous electrochemistry, the dual-mode biosensing platform exhibited high accuracy, sensitivity and reliability. The detection limits of HO were 0.2 μM (S/N = 3) for the colorimetric method and 2.5 nM (S/N = 3) for the homogeneous electrochemistry assay. Therefore, the dual-mode biosensing platform provided a new opportunity for highly accurate and sensitive detection of intracellular/extracellular HO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341332DOI Listing

Publication Analysis

Top Keywords

dual-mode biosensing
12
biosensing platform
12
homogeneous electrochemistry
12
colorimetric homogeneous
8
homogeneous electrochemical
8
detection intracellular/extracellular
8
based fes/sio
8
fes/sio nanoparticles
8
high peroxidase-like
8
peroxidase-like activity
8

Similar Publications

A dual-mode biosensor for microRNA detection based on DNA tetrahedron-gated nanochannels.

Mikrochim Acta

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.

A biosensor based on solid-state nanochannels of anodic aluminum oxide (AAO) membrane for both electrochemical and naked-eye detection of microRNA-31 (MiR-31) is proposed. For this purpose, MoS nanosheets, which possess different adsorption capabilities to single-stranded and double-stranded nucleic acids, are deposited onto the top surface of the AAO membrane. Moreover, multi-functional DNA nanostructure have been designed by linking a G-rich sequence for folding to a G-quadruplex at three vertices and a complementary sequence of MiR-31 at the other one vertex of a DNA tetrahedron.

View Article and Find Full Text PDF

A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.

View Article and Find Full Text PDF

Frontiers in laccase nanozymes-enabled colorimetric sensing: A review.

Anal Chim Acta

February 2025

Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany. Electronic address:

In recent years, nanozyme-based analytics have become popular. Among these, laccase nanozyme-based colorimetric sensors have emerged as simple and rapid colorimetric detection methods for various analytes, effectively addressing natural enzymes' stability and high-cost limitations. Laccase nanozymes are nanomaterials that exhibit inherent laccase enzyme-like activity.

View Article and Find Full Text PDF

A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!