AI Article Synopsis

  • TNFRSF14/HVEM is linked to immune response regulation and tumor progression, with its overexpression correlating to poorer prognosis in cancer patients.
  • Researchers developed mouse models that mimic human BTLA and HVEM interactions to study the effects of a specific antibody (anti-HVEM18-10) on T cell activity in cancer environments.
  • The findings indicate that anti-HVEM18-10 enhances T cell responses against tumors, decreases the presence of exhausted T cells, and leads to lasting tumor immunity, suggesting its potential as a therapeutic option in cancer treatment.

Article Abstract

Background: Tumor necrosis factor superfamily member 14 (TNFRSF14)/herpes virus entry mediator (HVEM) is the ligand for B and T lymphocyte attenuator (BTLA) and CD160-negative immune co-signaling molecules as well as viral proteins. Its expression is dysregulated with an overexpression in tumors and a connection with tumors of adverse prognosis.

Methods: We developed C57BL/6 mouse models co-expressing human (hu)BTLA and huHVEM as well as antagonistic monoclonal antibodies (mAbs) that completely prevent the interactions of HVEM with its ligands.

Results: Here, we show that the anti-HVEM18-10 mAb increases primary human αβ-T cells activity alone (CIS-activity) or in the presence of HVEM-expressing lung or colorectal cancer cells in vitro (TRANS-activity). Anti-HVEM18-10 synergizes with antiprogrammed death-ligand 1 (anti-PD-L1) mAb to activate T cells in the presence of PD-L1-positive tumors, but is sufficient to trigger T cell activation in the presence of PD-L1-negative cells. In order to better understand HVEM18-10 effects in vivo and especially disentangle its CIS and TRANS effects, we developed a knockin (KI) mouse model expressing human BTLA (huBTLA) and a KI mouse model expressing both huBTLA/huHVEM (double KI (DKI)). In vivo preclinical experiments performed in both mouse models showed that HVEM18-10 treatment was efficient to decrease human HVEM tumor growth. In the DKI model, anti-HVEM18-10 treatment induces a decrease of exhausted CD8 T cells and regulatory T cells and an increase of effector memory CD4 T cells within the tumor. Interestingly, mice which completely rejected tumors (±20%) did not develop tumors on rechallenge in both settings, therefore showing a marked T cell-memory phenotype effect.

Conclusions: Altogether, our preclinical models validate anti-HVEM18-10 as a promising therapeutic antibody to use in clinics as a monotherapy or in combination with existing immunotherapies (antiprogrammed cell death protein 1/anti-PD-L1/anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4)).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231015PMC
http://dx.doi.org/10.1136/jitc-2022-006348DOI Listing

Publication Analysis

Top Keywords

mouse model
12
model expressing
12
expressing human
8
human hvem
8
mouse models
8
cells
7
tumors
6
mouse
5
human
5
hvem
5

Similar Publications

Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse.

J Cachexia Sarcopenia Muscle

February 2025

Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.

Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.

Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.

View Article and Find Full Text PDF

Aims: This study aimed to explore the role and underlying mechanisms of brain-derived exosomes in traumatic brain injury-induced acute lung injury (TBI-induced ALI), with a particular focus on the potential regulation of ferroptosis through miRNAs and Scd1.

Methods: To elucidate TBI-induced ALI, we used a TBI mouse model. Exosomes were isolated from the brains of these mice and characterized using TEM and NTA.

View Article and Find Full Text PDF

High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension.

Arterioscler Thromb Vasc Biol

December 2024

Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).

Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.

View Article and Find Full Text PDF

Objectives: To explore the effect and the probable mechanisms of JLD in the treatment of type 2 diabetes mellitus (T2DM) - associated cognitive impairment (TDACI).

Methods: The effect of JLD in combating TDACI was assessed in T2DM model mice by conducting Morris water maze (MWM) behaviour testing. Active components and their putative targets, as well as TDACI-related targets, were collected from public databases.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its poor prognosis. Traditional Japanese herbal medicine (Kampo), such as Juzentaihoto (a standardized combination of 10 herbal extracts), has shown immune modulatory effects, modulation of microcirculation, and amelioration of fatigue. It is administered to patients to prevent deterioration of cachexia and counteract side effects of chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!