Structural characterization of potato starch modified by a 4,6-α-glucanotransferase B from Lactobacillus reuteri E81.

Int J Biol Macromol

King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589 Jeddah, Saudi Arabia. Electronic address:

Published: July 2023

The recent reports have revealed that increase in amount of α-1,6 linkages by modification of potato starch with enzyme (glycosyltransferases) treatment gains slowly digestible properties to the starch; however, the formation of new α-1,6-glycosidic linkages diminish the thermal resistance of the starch granules. In this study, a putative GtfB-E81, (a 4,6-α-glucanotransferase-4,6-αGT) from L. reuteri E81 was firstly used to produce a short length of α-1,6 linkages. NMR results revealed that external short chains mostly comprised of 1-6 glucosyl units were newly produced in potato starch, and the α-1,6 linkage ratio was significantly increased from 2.9 % to 36.8 %, suggesting that this novel GtfB-E81 might have potentially an efficient transferase activity. In our study, native and GtfB-E81 modified starches showed fundamental similarities with respect to their molecular properties and treatment of native potato starch with GtfB-E81 did not remarkably change thermal stability of the potato starch, which seems to be very prominent for the food industry given the significantly decreased thermal stability results obtained for the enzyme modified starches reported in the literature. Therefore, the results of this study should open up emerging perspectives for regulating slowly digestible characteristics of potato starch in future studies without a significant change in the molecular, thermal, and crystallographic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124988DOI Listing

Publication Analysis

Top Keywords

potato starch
24
starch
8
reuteri e81
8
α-16 linkages
8
slowly digestible
8
modified starches
8
thermal stability
8
potato
6
structural characterization
4
characterization potato
4

Similar Publications

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Fabrication and characterization of emulsion stabilized by tannic acid/soluble potato starch complexes.

Int J Biol Macromol

January 2025

Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510180, China. Electronic address:

In this study, the influence of tannic acid (TA)/soluble potato starch (PS) mass ratio and PS concentration on TA/PS complexes and emulsions stabilized by TA/PS complexes were studied. The size, hydrophobicity and emulsifying properties of TA/PS complexes were all controlled by TA/PS mass ratio and PS concentration. In detail, the hydrophobicity of PS (θ = 48°) improved after complexing with TA to form TA/PS complexes (θ = 64°).

View Article and Find Full Text PDF

Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.

View Article and Find Full Text PDF

The changes in properties and structures of raw sweet potato starch (RAW-SPS) and heat-moisture treatment (HMT) sweet potato starch (HMT-SPS) during gelatinization process (S1-S6) was investigated to elucidate the improvement effect of HMT on SPS. It was found that SPS exhibited the characteristics of pseudoplastic fluids, characterized by shear thinning and thixotropy, belonged to the C-type starch crystal. The gelatinization temperature of SPS was increased to 82.

View Article and Find Full Text PDF

Potato is the fourth-most important food crop around the world, and most of the potatoes are used for foodstuffs and starch products. The aim of this paper is to identify the volatile compounds and metabolites in potatoes with different processing properties. The results showed large differences of volatile and metabolite compounds such as 2,4-Heptadienal and rhoifolin in potatoes and indicated the potential regulations between volatile compounds and metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!