Stem cell therapy has emerged as a promising regenerative medicine strategy but is limited by poor cell survival, leading to low therapeutic outcomes. We developed cell spheroid therapeutics to overcome this limitation. We utilized solid-phase FGF2 to form functionally enhanced cell spheroid-adipose derived (FECS-Ad), a type of cell spheroid that preconditions cells with intrinsic hypoxia to increase the survival of transplanted cells. We demonstrated an increase in hypoxia-inducible factor 1-alpha (HIF-1α) levels in FECS-Ad, which led to the upregulation of tissue inhibitor of metalloproteinase 1 (TIMP1). TIMP1 enhanced the survival of FECS-Ad, presumably through the CD63/FAK/Akt/Bcl2 anti-apoptotic signaling pathway. Cell viability of transplanted FECS-Ad was reduced by TIMP1 knockdown in an in vitro collagen gel block and a mouse model of critical limb ischemia (CLI). TIMP1 knockdown in FECS-Ad inhibited angiogenesis and muscle regeneration induced by FECS-Ad transplanted into ischemic mouse tissue. Genetic overexpression of TIMP1 in FECS-Ad further promoted the survival and therapeutic efficacy of transplanted FECS-Ad. Collectively, we suggest that TIMP1 acts as a key survival factor to improve the survival of transplanted stem cell spheroids, which provides scientific evidence for enhanced therapeutic efficacy of stem cell spheroids, and FECS-Ad as a potential therapeutic agent to treat CLI. STATEMENT OF SIGNIFICANCE: We used FGF2-tethered substrate platform to form adipose-derived stem cell spheroids, as we named as functionally enhanced cell spheroid-adipose derived (FECS-Ad). In this paper, we showed that intrinsic hypoxia of spheroids upregulated expression of HIF-1α, which in turn upregulated expression of TIMP1. Our paper highlights TIMP1 as a key survival factor to improve survival of transplanted stem cell spheroids. We believe that our study has a very strong scientific impact as extending transplantation efficiency is essential for successful stem cell therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2023.05.033 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen 52074, Germany.
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFPatients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) have poor outcomes. Gemcitabine + oxaliplatin (GemOx) with rituximab, a standard salvage therapy, yields complete response (CR) rates of approximately 30% and median overall survival (OS) of 10-13 months. Patients with refractory disease fare worse, with a CR rate of 7% for subsequent therapies and median OS of 6 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!