Molecular profiling of CO/pH-sensitive neurons in the locus coeruleus of bullfrogs reveals overlapping noradrenergic and glutamatergic cell identity.

Comp Biochem Physiol A Mol Integr Physiol

Division of Biological Sciences, University of Missouri, Columbia, MO, USA. Electronic address:

Published: September 2023

Locus coeruleus (LC) neurons regulate breathing by sensing CO/pH. Neurons within the vertebrate LC are the main source of norepinephrine within the brain. However, they also use glutamate and GABA for fast neurotransmission. Although the amphibian LC is recognized as a site involved in central chemoreception for the control of breathing, the neurotransmitter phenotype of these neurons is unknown. To address this question, we combined electrophysiology and single-cell quantitative PCR to detect mRNA transcripts that define norepinephrinergic, glutamatergic, and GABAergic phenotypes in LC neurons activated by hypercapnic acidosis (HA) in American bullfrogs. Most LC neurons activated by HA had overlapping expression of noradrenergic and glutamatergic markers but did not show strong support for GABAergic transmission. Genes that encode the pH-sensitive K channel, TASK2, and acid-sensing cation channel, ASIC2, were most abundant, while Kir5.1 was present in 1/3 of LC neurons. The abundance of transcripts related to norepinephrine biosynthesis linearly correlated with those involved in pH sensing. These results suggest that noradrenergic neurons in the amphibian LC also use glutamate as a neurotransmitter and that CO/pH sensitivity may be linkedto the noradrenergic cell identity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492231PMC
http://dx.doi.org/10.1016/j.cbpa.2023.111453DOI Listing

Publication Analysis

Top Keywords

neurons
8
locus coeruleus
8
noradrenergic glutamatergic
8
cell identity
8
neurons activated
8
molecular profiling
4
profiling co/ph-sensitive
4
co/ph-sensitive neurons
4
neurons locus
4
coeruleus bullfrogs
4

Similar Publications

Background: Cognitive impairment is prevalent in bipolar disorder (BD), and has negative impacts on functional impairments and quality of life, despite euthymic states in most individuals. The underlying neurobiological basis of cognitive impairment in BD is still unclear.

Methods: To further explore potential connectivity abnormalities and their associations with cognitive impairment, we conducted a degree centrality (DC) analysis and DC (seed)-based functional connectivity (FC) approach in unmedicated, euthymic individuals with BD.

View Article and Find Full Text PDF

Spiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such hardware, mainly digital, is typically built on mature silicon nodes. Future artificial intelligence applications will demand the execution of tasks with increasing complexity and over timescales spanning several decades.

View Article and Find Full Text PDF

Diabetes is an incurable, chronic disease that can lead to many complications, including angiopathy, peripheral neuropathy, and erectile dysfunction (ED). The angiopoietin-Tie2 signaling pathway plays a critical role in blood vessel development, formation, remodeling, and peripheral nerve regeneration. Therefore, strategies for activating the Tie2 signaling pathway have been developed as potential therapies for neurovascular diseases.

View Article and Find Full Text PDF

We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!